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METABELIAN GROUPS AND VARIETIES

By R. A. BRYCE
Department of Mathematics, The Australian National University,
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282 R. A. BRYCE

CHAPTER O
0.1. Introduction

The bulk of this paper is concerned with the varietal properties of certain rather special universal
algebras, called split-groups. As the name implies, a split-group is a group with a number of
given splittings. The definitions and basic properties are developed in chapter 1, along the general
lines of Hanna Neumann’s book (1967), the aim being to provide a firm basis for the later
chapters. There are many questions that one might ask about varieties of split-groups—
practically all meaningful questions about varieties of groups are meaningful here—but with a
few minor exceptions we ignore them as not being relevant to our purpose. This purpose could
be broadly defined as the shedding of light on the nature of varieties of metabelian groups.

From the work of L.G.Kovacs & M.F. Newman (unpublished), Brooks (1968) and the
present work it has become clear that, while the possibility of classifying all metabelian varieties
is at present slight, there is a good chance of describing all the join-irreducible ones which are not
nilpotent. Kovacs & Newman (see (6.1.1), (6.1.2) of the present paper) have provided a reduc-
tion of this problem to the case of finite exponent. It was in tackling an aspect of this residual case
that I had the idea of split-groups; and it turns out that classification of certain join-irreducible
varieties of split-groups is necessary to the classification of join-irreducible varieties of metabelian
groups. Chapters 3 and 4, though couched in split-group language, are of direct relevance to this
problem, and reduce the problem further to the case of prime-power exponent.

Chapters 4 and 5 have an indirect relevance to varieties of metabelian groups in that, for the
variety of split-groups 2o (the class of all split-groups with a prescribed abelian-by-abelian
splitting), we describe all non-nilpotent join-irreducible subvarieties. For varieties of metabelian
groups this information is still incomplete, though recently Brooks (1968) has determined all
non-nilpotent join-irreducible subvarieties of 2, 2 2 (# prime), and there is hope that his methods
will generalize to the case of arbitrary prime-power exponent (perhaps along the lines of § 4.2).
Chapter 5 depends heavily on work of L. G. Kovacs & M. F. Newman (unpublished) and I thank
them for allowing me to adapt their methods. Proofs of the relevant results of theirs ((6.1.1),
(6.1.2)) are sketched in appendix I; a fuller acknowledgement is given in the introduction to
chapter 5.

Chapter 6 is application to varieties of metabelian groups. We derive a complete description
of the lattice of subvarieties of certain metabelian varieties 2 in the following cases; first when
8 is 2, A, with m nearly prime to n (p | m implies p2{ n), thus generalizing work of Cossey (1966)
who deals with the coprime case, and of Kovacs & Newman (unpublished) who handle the
case m = p*, n = p; and second when B has finite exponent and p-groups in 9B have class at
most p, thus generalizing Weichsel (1967) and Brisley (1967). We also have results about the
distributivity of the lattice of subvarieties of arbitrary %, 9.

L. G. Kovdcs has pointed out that split-groups of species 2 can be thought of as group pairs, in
the terminology of Plotkin (1966). Chapters 1 to 5 here therefore contain, so far as I am aware, the
first detailed results on specific varieties of group pairs.

A résumé of this paper is contained in Bryce (1969).
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0.2. Notation and terminology

For results relating to varieties of universal algebras we refer the reader to B. H. Neumann
(1962), and, for results and notation relating specifically to varieties of groups, to Hanna
Neumann (1967).

We differ from the latter only in writing H < G if His a subgroup of G. If His a proper subgroup
of G, thatis H + G, we write H < G. If His normal in G we write H € G. Write G = (H,, ..., H,)
if G is generated by the subsets H, ..., H,.

If Gis a group and x, y are elements of G denote y~txy by x¥ and the commutator x~1x¥ by [x, y].
Commutators of higher weight are defined as left-normed: if xy,...,x, belong to G and
[*y5 ..., %,_1] has been defined, then

[ eos %] = [[X15 2v0s Xl X ]
Define [, 0y] = x, and for r > 0, [x, (v + 1) y] = [[x,7y],y].

If H, K are subsets of G, then [H, K] is the subgroup of G generated by the elements [Z, k]
(he H, ke K). The derived group G’ = Gy of G is [G, G]. A group G is metabelian if [G',G'] = 1,
where we use 1 to denote the identity of the group as well as the trivial subgroup. The normal
closure of H in G is denoted by H¢.

The lower central series of a group G is defined as in Hanna Neumann (1967, 12.82). The
centralizer of a subgroup H of G is denoted by C,(H), and the centre of G by Z(G). The Fitting
subgroup of a finitc group G, the largest normal nilpotent subgroup of G, is denoted by F(G).

A finite group with a unique minimal normal subgroup is called monolithic, and the unique
minimal normal subgroup is the monolith. The socle of a finite group G is the subgroup generated
by all minimal normal subgroups of G' and is denoted by oG.

In later chapters, Chapter 4 in particular, many well-known commutator identities will be
used, often without comment. The onecs used are listed here. In any group G the following are
identities:

[x: yZ] = [x: Z] [x) y] [xa Y, Z],
[xy: Z] = [x) Z] [x> Z, ?/] [?/, Z],
[x)?/] = [?/’ x]_1>

[xa y_l] = [xa y]_” e
In a metabelian group G:

[x:y:z] [% Z:x] [Z,xa!/] =1
[d’xay] = [d:%x];

therefore, if d is in Cy(G"),

for all natural numbers r, ‘
[0 = i) (0.2.)
o) = I Lt gt (0:22)

I+ will be used to denotc the set of natural numbers.
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CHAPTER 1. VARIETIES OF SPLIT-GROUPS

In this chapter we are concerned with varieties of certain objects called split-groups, which
are defined below. A split-group is, suitably interpreted, a universal algebra, and this is pointed
out in § 1.2; hence much general theory is applicable to our situation, and it will be called on to
eliminate long proofs which would be redundant. However, our interest in varieties of split-
groups, or split-varieties for short, is the way they can be used to give results about varieties of
groups; more insight seems to be gained by developing the theory of split-groups as is done
below, than is gained by regarding split-groups and varieties of split-groups as part of a much
more general framework.

1.1. Split-groups
DeriniTiON. A split-group of the species n, is an (n+1)-tuple (G, Ay, ..., A,) where G is a group,

Ay, ..., A, are subgroups generating G such that, if B; = (A, ..., 4,), i€{1, ..., n}, then A; is normal in
B; and is complemented in B; by B, :

4,4 B, A, Bii=B; 4;n By, =1

We shall denote the split-group (G, 4,, ..., A,)) by G when no confusion can arise as to the particular splitting
of G involved; also we may write A; = A;(G), B; = B;(G),i€{1,...,n}. The group G is called the carrier
of G; an element of G is an element of G. (1.1.1)

DerniTION. A4 sub-split-group of the split-group (G, A,, ..., A,) is a split-group (G*, A¥, ..., AF)
where G* is a subgroup of G and where AT = A;n G*, ie{l, ...,n}. 4 sub-split-group is normal if it is
normal as a subgroup. (1.1.2)

DErFiNiTION. A morphism g between two split-groups (G, A, ..., A,) and (G*, AF, ..., A¥) is a group
homomorphism p: G — G* such that A;p < Af, i€{1,...,n}. We write u: G— G*, (1.1.3)

Notice that morphisms are defined only between split-groups of the same species; this depend-

ence on the species will often be left understood, unless it is necessary to clarify the meaning.
Note also that, in general, an inner automorphism of G is not a self-morphism of G.

DEFINITION. A morphism is epi or mono according as it is onto or one-to-one as a group homomorphism
of the carriers. (1.1.4)

DermntTiON. If G = (G, 44, ..., A,) is a split-group and N is a normal sub-split-group of G, the
quotient split-group G|N is the split group

G|N = (G|N, 4, N|N, ..., 4, N|N). (1.1.5)

The right-hand side is indeed a split-group: clearly 4; N/N < B; N/N and ifa;€ 4;, b;,,€ B; 4
such that a; N = b, N then biia;e N= (Nn4,)...(Nn4,) which implies a,e N by the
uniqueness of the decomposition g = a, 4, ... a, for an element g of G.

Lemma If u: G— G* is a morphism between two split-groups then

(keru, kerpu| A;(G), ..., kerp |4, (G))

is a normal sub-split-group of G. (Here u|A;(G) denotes the restriction of u to A;(G).) (1.1.6)

Proof. We have only to verify that keru splits appropriately; indeed if a, a, ... a, € ker 4 with
a;€ 44(G), then (arp) (axp) ... (a,p) =1 so that ayp=...=a,p=1, or a;ekerp|d;(G),
ie{l,...,n}
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DerintTION. The cartesian product of a collection of split-groups G; = (G, A, ...y Ayn) (G€I) of
the same species is the split-group G where G = IG; i€} and where A(G) = II{A;;:i €1} is embedded
in G in the natural way:

A;(G) = {feG:f(i)edy, iel}.
The restricted direct product is defined similarly. (1.1.7)

Derinttion. 4 fully invariant sub-split-group of G is one invariant under all self-morphisms of G.
(1.1.8)
Note that, as not every inner automorphism of G is a self-morphism of G, a fully invariant
sub-split-group need not be normal; for example 4,(G) is fully invariant, but of course not
necessarily normal, in G. It is easy to see that the intersection of the normal sub-split-groups
which contain a given fully invariant sub-split-group is fully invariant (and normal).

DEFINITION. 4 generating set {a;;€ A;(G): jeJ;, 1 < 1 < n} of G will be called a generating set of G.
A split-group is finitely generated if it has a finite generating set. (1.1.9)

A split-group will be said to have a certain property if its carrier has the property; thus G
is finite if G is finite. For split-groups of small species, special names will be adopted: a split-group
of species 2 is a bigroup, and one of species 3 is a trigroup.

Finally, in this section, we note a few abuses of language that will occur from time to time.
The trivial split-group should, of course, be written as 1 = (1, 1, ..., 1) but we will write 1 for it,
and also for the trivial sub-split-group of a split group. A subgroup § of G may be referred to as
“the sub-split-group $” of G if it splits appropriately, while a sub-split-group may be referred to
as a subgroup if, by doing so, the desired emphasis is conveyed without creating confusion.

1.2. Alternative formulation

We shall in this section characterize split-groups as certain universal algebras. We repeat that
our reference for results on universal algebras is Neumann (1962). The operator domain is
defined as follows.

DEFINITION. 2, is a commutative semigroup {wg, Wy, ..., ®,} of order n+ 1 with multiplication table
w0; =w; for 0<i<j<n (1.2.1)
In the terminology of Clifford & Preston (1961), 2, is a commutative band, fully ordered with
respect to the relation: w; < w; if and only if w; w; = w;.

DEFINITION. An 2,-group is a triple (G, 2,, ), where G is a group and where the mapping e : G x 2, G
has the properties
(xy) ;e = (xw;e) (yo;e),
XWye =X, Aw,e =1,
and (x0;e) ;e = x(w; ;) e,

Jorall x,ye Gand 7, j€{0, 1, ...,n}. (1.2.2)

Since an £,-group is a universal algebra, the concepts of sub-2,-group, quotient Q,-group
have standard definitions; we give them here using the well-known correspondence between
congruences on groups and normal subgroups.

DEFINITION. A sub-£2,~group of an Q,-group (G, 2, ¢e) is an Q,-group (G*,Q,, e*) where G* is 4
subgroup of G and where e* = e|G* x Q2,,. (L.2.8)
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DeFintTION. If (G, 2,,, ¢) is an 2,-group and (N, 2, ¢') is a normal sub-Q,,-group (that is, a sub-£,,-
group which is normal qua subgroup), then the quotient Q,-group (G, 82,,e)[(N,2,,¢e") is the Q,-group
(G|N, 2,,,e") where e": G|N x ,— G| N is defined by xNow; e” = xw;eN. (1.2.4)

DEerINITION. A homomorphism p: (G, 2,,e) - (G*, 2,,,e*) between ,-groups is a group homo-
morphism p: G- G* such that for all xeG, (xw;e) p = (¥u) w; e*. (1.2.5)

DEerInNtTION. The cartesian product of a collection (G, 2,,¢;) ((€1) of Q,-groups is the ,-group
(G, 8,,¢), where G = II{G;:ceI} and where e: Gx 2, G is defined by fw;e(i) =f(i) w;e;, fEG,
iel, je{o,...,n}. : (1.2.6)

THEOREM. There is a_functor @ from the category of all split-groups of species n to the category of all
Q,~groups, which is one-to-one on both objects and morphisms and which preserves sub-structures, quotient
structures and cartesian products. - (L.2.0)

Proof. Let (G, 4,,...,4,) be a split-group. Define the endomorphisms o; of G by

(@105...0,) 03 =145 ... 0y

for all a;e 4;, je{l,...,n}, 1€{0,1,...,n—1}; and define o, to be the zero endomorphism of G.
We call o, the splitting endomorphisms of G. Clearly

0,0, = 0;0; = 0y, 0<i<j<n,} (1.2.8)

Oy = lg, o, = Og.
Also B;,; = Go;and 4; = kero;n B;, 1€{0, ..., n}. Conversely, if a group G has endomorphisms
o, with the properties (1.2.8), then by writing B;,, = Go,, A; =kero;n B;, i€{0,...,n},
(G, 4,,...,4,) is a split-group. For, if xe B, ; then

x = x0; = ((x07) (x0°3,.1)7") (%0711)

and ((x0;) (%0341)™") 041 = (¥0°s14) (¥0742) 7 =1, s0 that (x07) (x04y) T €ker oy 0 Byyy = Ay,
which shows that B, , = A;,, B; .. Also 4,,, < B;,,, and if yed;,, n B;,, then there exists
y,€G with y = y, 0,4, whence

L =y0i1 =410t0 =101 =Y
and therefore 4;,,n B, = 1. This shows that (G, 4,, ..., 4,) is a split-group.
IfG = (G, 4,,...,4,) is a split-group, define G® = (G, 2,,, e) where e: G x 2, -G is given by
xw;e = xoy, 1€40,...,n}, (1.2.9)

for all xeG. Conversely, if (G, 2,,¢) is an £, ,-group we use (1.2.9) to define endomorphisms
o, of G, which may easily be verified to have the properties (1.2.8), and therefore, in this way,
(G, 2, e) defines a unique split-group (G, 2, ¢) ¥. Clearly ®¥ is the identity mapping on the
class of all split-groups of species 7, and W@ is the identity mapping in the class of all 2, -groups,
hence @ is one-to-one and onto on objects.

If 4: G- G* is a morphism, then p: G®— G*® is a homomorphism; for it is easy to verify
that if o, of are the splitting endomorphisms corresponding to G, G* respectively, then
o = poi, 1 = {0, ...,n}. Hence, from (1.2.9)

(xwge) p = xo 34 = xuof = (xp) w; e*

for all xe G. Conversely, every : G® - G*® is a morphism p : G - G*. If we put u® = u, then
clearly @ is a functor. The rest of the theorem is proved by similar techniques which we omit.
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We may use definition 1.2.2 to appeal to general results: for example, the usual homomorphism
theorems apply for £2,-groups, and therefore, via theorem 1.2.7, for split-groups also. Because
of the application we wish to make, and for convenience in simplifying notation in the calcula-
tions of chapter 4, it is the split-group definition rather than the 2,-group definition that we use.
In the sequel we shall suppress statements in the £2,-group formulation except if the comparison
is of interest (for example we are led to different definitions of free objects), or if brevity can be
obtained by appeal to more general results.

1.8. Freeness of split-groups

Let Y,,...,Y, be free groups of rank my,...,m, respectively, on the free generating sets
{y:5: 7€} (|J;] = m;); we do not insist that the m; be finite cardinals. Put m = (m,, ...,m,) and
define the split group Q(m) as follows: the carrier is the free product ¥; ... *¥,, and

4,(Q(m)) = Y{Fo-Tm (1.3.1)

the normal closure of ¥; in (¥, ..., Y,>. As a matter of convenience we follow Hanna Neumann
(1967) and use co for the cardinal of the natural numbers; additionally we write o for the n-tuple
(0, ...,00).

DeriNiTION. Q(m) is the absolutely split-free split-group of rank m on the split-free generating set
{yy:7ed, 1 < i < np. Qo) of species n we denote by Q,,. For cardinals my, ...,m, no larger than oo,
we shall assume Q(m) embedded in Q,, in the natural way.

The use of the word ‘rank’ needs justifying and we will cover thisin (1.3.6). Where the context
allows, the inelegant prefix ‘split’ will be dropped.

THEOREM. If G is a split-group of species n then every set of mappings p;: {y.;:jeJ;}— A;(G) can be
extended to a morphism p: Q(my, ...,m,) - G. (1.3.2)

Proof. Since Q(my, ..., m,) is a free group with the y;;’s as a free generating set, certainly a group
homomorphism x, which extends all x4, exists; that 4,(Q(my, ..., m,)) # is contained in 4, follows
from the definition of 4,(Q (m, ..., m,)) and the fact that 4,(G) is normal in {4;(G), ..., 4,,(G)>.

As in more general situations, we have the concept of relative freeness, and theorems
characterizing it.

DEFINITION. 4 split-group G of species n is relatively split-free if it has a generating set
{aij:je‘]b 1< i < n}
with 1 + a;;€ A;(G) such that every set of mappings p,: {ay;:j €J;} = A;(G) can be extended to a morphism
of G into G. Such a generating set is called a split-free generating set for G. If m; = |J;|, (my, ..., m,) is
called the rank of G. ) (1.3.3)

Note that in this definition, some of the m; may be zero: this would occur if 4,(G) = 1.
Invariance of the rank will be proved in lemma 1.3.6.

THEOREM. If G is relatively split-free, then G has a representation Q[S, where Q is absolutely free of the
same rank as G, and S is a normal, fully invariant sub-split-group of Q. Conversely, every such quotient
split-group QS s relatively split-free; if the rank of Q is (my, ..., m,), then that of Q[S is (m3, ..., m,,)
where m; = my, unless S contains A;(Q) in which case m; = 0. (1.3.4)

Proof. Suppose that G is relatively split-free on the split-free generating set

{a;:jedy, 1 <i<nh


http://rsta.royalsocietypublishing.org/

. \
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

288 R. A. BRYCE

Let Q = Q(my, ...,m,) where m; = |J;|, i€{1, ..., n}. Define the epimorphism A: Q - G by

YuyA = ay, Jed, ie{l, ..., n}
and theorem 1.3.2. Put § = ker A; then § carries a normal sub-split-group of Q by (1.1.6). To
show that § is fully invariant, let « be an arbitrary self~morphism of Q and define the mapping
Bifay:jed;, 1 <i<np—Gby

a5 = (y;2) A
By definition, £ can be extended to a self-morphism of G. Since the restrictions of @A and Af to
the set {y,;:j€J;, 1 <1 < n} of generators of Q agree, aA = Af. Hence if s€S, sad = sAf = 1,
and so seeker A = S.

In order to prove the converse, we need the following lemma, which was proposed to me by
L. G. Kovacs.

LemMmA. Let H be relatively split-free on the generating set h = {hy;:jeJ;, 1 <1 < n}. Let a: H->K
be an epimorphism such that A,(H) + 1 implies A;(K) * 1, and such that ker o0 is fully invariant. Then
a|h is one-to-one, and K is relatively split-free on he. (1.3.5)

Proof. First, a|h is one-to-one. For, if Ao = hya, j + 1, then hy = hyx, xekero. Define
7: H— H so that hy;m = hy;, hyn = 1; then hy; = hy;7 = xneker a since ker « is fully invariant.
Hence 4,(H) is contained in kera and therefore 4;(K) = 1. It follows that a|h is one-to-one.

Secondly, H is split-free on ha. For let £: ha — K by any map such that 4;;a8 € A;(K). Define
n: H— H so that ;9 € h;;fa=1. Consider the map a~'ya from K to the set of non-empty subsets
of K. Observe that la=lyo = (kero) na < (kera) a = 1; that is la—tye = {1}. Also, if k£ = k7%,
then ko' = (k7' a™1). (k,@™1) in the usual multiplication of subsets of a group, and therefore

ko go = (kitana) . (kya ya).

Thus {1} = (k~'a"9a) . (ka~'na) for all ke K showing that |ka—'ya| = 1. Hence a~'9ga is an
endomorphism of K, and since it agrees on ha with S, it is a morphism K - K.

We return to the proof of (1.3.4). Write Q* for the absolutely split-free split-group of rank
(m3, ...,m,), where m; = m; unless S contains 4,(Q), in which case mj = 0. Then there exists
a natural morphism y: Q - Q* such that kery = (¥;: 4,(Q) < $H?. If §: Q — Q/S is the natural
morphism, define «: Q*— Q/S by

Yo =449
where yJ;, y;; are split-free generators of Q* and Q respectively. Clearly
yo = 6.

Now kera is fully invariant in Q*; for, if £: Q* - Q* then there exists 7:Q —Q such that
v& = ny; and if g*ekera, there exists ge Q with gy = ¢*. Now ¢ya = ¢*a = 1 = ¢§ which
means ¢ €S. Therefore

g*to = (qy€) o = (gny) o = (q) & = 1
since ¢gneS. That is, g*§ eker a, and therefore ker « is fully invariant. Also 4,(Q*) non-trivial
implies 4;(Q/S) non-trivial and so the conditions of the lemma 1.3.5 are satisfied, and Q/S has
the asserted properties.

LEMMA. The rank ts an invariant of a relatively split-free split-group. (1.3.6)

Proof. Let G be relatively split-free. If 4,(G) is non-trivial, then G’ does not contain 4,(G).
For, if a;; is an element of a split-free generating set, consider the self-morphism x: G — G such
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that a;; 4 = a;; with all other split-free generators mapped to 1. Clearly G’ is contained in ker p
and a;; is not in ker . Now G’ carries a fully invariant sub-split-group of G and the hypotheses
of (1.3.5) are satisfied by the natural morphism « : G - G/G’. Hence G|G" is relatively split-free
of the same rank as G; and since each 4,(G/G’) is a relatively free abelian group, its rank is
invariant, and therefore so is that of G.

To conclude this section I mention that had one treated a split-group as an £,-group as
discussed in § 1.2, one would have been led to a smaller class of free split-groups; indeed we can
make a distinction between ‘free split-group’ and ‘split-free split-group’ as indicated by the
following theorem.

THEOREM. Let (G, 2, ¢) be a free 2,-group in the variety of all Q,-groups, say one of rank k. Then
(G, Q,,¢) D1 is an absolutely split-free split-group of species n, and rank (k,k, ..., k). (1.3.7)
Proof. Write G = (G, 2,,¢) ®L. Let {x;:je J} be a free generating set for (G, 2,,¢), |J| = k.
Put
2y = (%;0;_5¢) (vy0,0)7Y, ie{l,..,n},jeJ.
Then, for each jeJ,
Xj = Zy;Zaj .. Zyje
It is clear, therefore, that {z;;:j€J;, 1 < 7 < n} is a generating set for G. Let H be an arbitrary
split-group, H® = (H,Q,,e*), and p,;:{z;:jel;}—>A4;(H) a set of mappings. Define
pi{x;ijeJ— HP by
Xipe = (245/01) (Zaj/00) -+ (Znjttn), JEJ-
It follows that u can be extended to a homomorphism u: G® - H®, and hence, by theorem

1.2.7, that #: G— H is a morphism. It is easy to verify that # does extend the p;:

zyb = ((%0;_58) (x;0;) ") po
(25 0) 5y %) ((x; ) ;%) 7
= (245 ;) «r (Zngthn) - (Zi41i 1) --- (znjlun))_l

= Z; Py-

If we choose for H the split-free split-group of species n, Q(£, ..., k), define u as above from
Wi Zi;—> Y and v: H— G by v:y;;—z;; and theorem 1.3.2, we get thatuy = lg and vu = 1y, so
G~ H=0Q(k,..,Kk).

1.4. Split-words
DEFiNITION. A split-word of species n is an element of Q,,. (1.4.1)

DerINITION. Two sets Sy, S, of split-words of species n are super-equivalent if they have the same
Sully invariant closure in Q,,. (1.4.2)

We shall need a version of theorem 33.45 of Hanna Neumann (1967); our adaption is made
from unpublished results of L. G. Kovdcs & M. F. Newman which strengthen 33.45. Note that
the carrier of Q,, is a free group of countably infinite rank on the free generating set

{yijjelt 1 <i<nl

DEFINITION, For i€{1,2, ...,n}, je I, define the self-morphisms 8y (called deletions) of Q,, by

Y (kJ) +* (i’j)f
ykl(sij = { lil) (/i,‘, l) _ (Z,]).} (1'4'3)

36 Vol. 266.  A.
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DEFINITION. An element q of Q,, is uniform if for each deletion 0,4, either q0;; = 1 0r q0;; = q. (1.4.4)

THEOREM. If q belongs to Q (my, ...,m,) for finitem,, then q is a product of split-words g7, J < J;U...U J,
(the J; are assumed pairwise disjoint), such that, for each J:

(1) qg belongs to the subgroup of Q,, generated by the images of q under all deletions;

(ii) gy is a product of left normed commutators of weight at least | J| whose entries are from

{yi,y75:7€J, 1 <i<n},

each containing at least one entry from {yy,y7i} (j€J, 1 < i< n). (1.4.5)
The split-words ¢ are all uniform and therefore

CoroLLARY. Each split-word is super-equivalent to a finite set of uniform split-words. (1.4.6)

DEeFINITION . The split-verbal sub-split-group of a split-group G of species n, determined by
S < Q,, is the sub-split-group S(G) whose carrier is the subgroup of G generated by the set

{g:q€e S, a:Q,—~ G}. (1.4.7)

Note that, by definition, this set admits every self-morphism of G hence so does the subgroup
of G generated by it. In particular, this subgroup admits the splitting endomorphisms o; of G
and hence carries a sub-split-group: so definition 1.4.7 is justified. Moreover, it follows that
every split-verbal sub-split-group is fully invariant. As the carrier of §(Q,,) is the least subgroup
to contain the images of .S under all self-morphisms of Q,, the fully invariant closure of §'in Q,,
must contain $(Q,); but as $(Q,) is fully invariant and contains S, it follows that the fully
invariant closure of S'in Q,, is precisely $(Q,,):

TueoreMm, If S < Q,, then the fully invariant closure of S in Q,, is §(Q,,). (1.4.8)

DEerINITION. Two sets Sy, Sy of split-words of the same species n are equivalent if they have the same
normalized fully invariant closure in Q,. (It is easily seen that the normal closure qua subgroup of
a sub-split-group is a sub-split-group: If U is a sub-split-group of G, ueU, geG, then
(w9) o; = (uoy)?7ie UY.) (1.4.9)

TueoREM. If S, S, are super-equivalent, they are equivalent. (1.4.10)

TueoreM. Two sets Sy, Sy of split-words of species n are equivalent if and only if the normalized split-
verbal sub-split-groups they determine in every split-group of species n are equal. (1.4.11)

Proof. One way around is obvious. For the other, suppose that S}, S, are equivalent, and let G
be any split-group of species 7. We must show that

$,(G)° = 85,(G)°.

The following lemma is useful here.

Lemma. If S is a set of split-words, G a split-group and N a normal sub-split-group of G, then
S(G/N) = S(G) N|N. (1.4.12)

Proof. Every morphism o: Q, - G|/N can be factored through G via the natural morphism
v: G- G/|N,say a = pv. Conversely every f#: Q,,— G can be continued to o : Q,—~ G/N by o = fv.
Hence S(G) v = S(G|N) which is what we wanted.

The proof of (1.4.11) runs as follows. First note that if §'is a subset of Q,, and a: Q,, - H, then
$(Q,,) ais contained in S (H). Hence, with H = G|N, we have §;(H) = 1 if and only if §,(Q,,) is
contained in n {ker «: a: Q, - H}; and since S}, S, are equivalent, this is true if and only if $,(Q,,)
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is contained in n {ker @ : o: Q,, — H} which in turn is true if and only if S,(H) = 1. It follows that
$1(G) < 8,(G)% (putting N = S,(G)%) and therefore that $;(G)¢ < S,(G)%. In a similar way
$3(G)% < 81(G)Y, and this completes the proof.

Theorem 1.4.8 can be stated in a more familiar form for all relatively split-free split-groups
as follows.

THEOREM. A4 sub-split-group of a relatively split-free split-group is fully invariant if and only if it is
split-verbal. (1.4.13)

Proof. Given a relatively split-free generating set of G and an element /% of the sub-split-group
H of G, then there exists a finite subset 7" of that generating set such that ze (7). There exists
a finite subset 7" of a free generating set of Q,, and a one-to-one map x:7” - T which extends
to u*:Q,—~ G.

Now {T"yu* = (T; hence there exists ge{T") with gu* = h. Given «:Q,,—~ G let f:G—> G
be an extension of y~'x:7— G. Then as p*f and o agree on 7, they agree on (7"), hence, in
particular, ga = gu*f = hf e H if H is fully invariant. This proves that fully invariant sub-split-
groups of G are split-verbal; and the converse is true in any split-group.

THEOREM. There is one-to-one correspondence between the (normalized) fully invariant sub-split-groups
0f Q,/S(Q,,)?» and the (normalized) fully invariant sub-split-groups of Q,, containing S(Q,)9». (1.4.14)
Proof. This proof'is an easy application of the last theorem.

Lemma. If S is a normal sub-split-group of Q,,, then S(G) is normal in G for all G of species n.
(1.4.15)
Proof. 1t is sufficient to show that (go)?€S§(G) whenever g€ S, «:Q,— G, ge G. The proof is
similar to that of (1.4.13); there exist a*: Q,,— G, §€Q,, such that ga* = qa, gou* = g, so that

(q2)7 = (qa*)?* = (¢?) a* € S(G)
since § is normal in Q,,.

1.5. Split-varieties

DEerFINITION. If 8 is a subset of Q,, the class of all split-groups G of species n such that S(G) = 1 is the
variety of split-groups (or, briefly, the split-variety) determined by S. For varieties of split-groups of
small species we use special names; thus bivariety and trivariety. (1.5.1)

THEOREM. Equivalent sets of split-words determine the same split-variety. (1.5.2)

Proof. If S,, S, are equivalent, then, by theorem 1.4.9, for any G, S;(G)% = 1 if and only if
S,(G)% = 1; that is §,(G) = 1 if and only if §,(G) = 1.

From this theorem it follows that, in defining split-varieties, we need only consider sets of
split-words § which are normal, and carry fully invariant sub-split-groups of Q,,, since every
sub-set of Q,, is equivalent, by definition, to its normalized fully invariant closure. The normal-
ized fully invariant closure of S is denoted by ¢ZS.

DerintTION. If S is a normal, fully invariant sub-split-group of Q.,, the split-variety determined by S will
be denoted by & . (Again we shall drop the prefix ‘split’ if the context allows.) We shall sometimes write
& (G) and S(G) for S(G). (1.5.3)

Note that, for varieties of split-groups of species 1, that is to say, for varieties of groups in the
usual sense, we will use the customary German letters.

THEOREM. The correspondence S —F between normal, fully invariant sub-split-groups S of Q,, and
the varieties & o7 split-groups of species n is one-to-one and reverses inclusions. (1.5.4)
36-2
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Proof. Suppose S, S, are normal and fully invariant in Q,, and ] is contained in %, then
by lemma 1.4.10,
0,/8:€% < %,

and so 8, = §,(0Q,,) is contained in ;. It follows that if ¥ = &, then S; = S,.

It is clear that a split-variety is closed under the operations of forming sub-split-groups,
quotient split-groups and cartesian products of split-groups. The converse of this is also true on
account of theorem 1.2.7, and Birkhoff’s corresponding result for varieties of universal algebras.
The proof is omitted.

TuEOREM. A class of split-groups is closed under the operations of forming sub-split groups, quotient
split-groups and cartesian products of split-groups if and only if it is a split-variety. (1.5.5)

DerintTiON. A split-word q in Q,, is a split-law in G if {¢} (G) = 1; simply written, ¢(G) = 1. If &
is a split-variety determined by the normal, fully invariant sub-split-group S of Q,, then the elements of S
are called the split-laws of & . (1.5.6)

DEFINITION. Given a split-variety & and an n-tuple m = (my, ..., m,,) such that m; = 0 if y,; €S, we

call Q(m)[S(Q(m)) the split-free group F, (&) of rank m of &, and write F,, (&) for its carrier.
(1.5.7)

By theorem 1.3.4 F, (%) is relatively split-free of rank m, and it lies in &. Moreover,

TuEOREM. Every ‘ admissible’ mapping of a split-free generating set of F,,,(F) into a split-group G in &
can be extended to a morphism. © (L.5.8)

Proof. Let 2z ={z;:jeJ;, 1 <i<n} be a split-free generatlng set for Q(m); then if
v:Q(m)—F, (&) is the natural morphlsm, {zyvijed;, 1 <1 < n} = zvis a split-free generating
set of F,, (). Suppose f:2v— G e such that z;;vf is in A,-(G). Then vf:2—> G extends to a
morphism §: Q(m) — G. Since Q(m) d is contained in G and G is in & it follows easily that ker &
contains S(Q(m)). Hence d can befactored through v,say é = vy and by definition, (zv) & = (2v) f;
v is the extension of §. This completes the proof.

Theorem 1.3.4 yields,

THEOREM. Every relatively split-free split-group is split-free in some & . (1.5.9)

TuroreM. If 8 is a fully invariant sub-split-group of Q,, then S(m) = Sn Q(m) is fully invariant
n Q(m), and
§(m) = S(Q(m)),
and S(m)2m = §9n Q(m). (1.5.10)

Proof. Clearly S(Q(m)) is contained in Q(m)n S = §(m). Conversely, if ¢ is in Q(m)n S
and « is a self-morphism of Q,, which maps Q(m) identically and everything else to 1, then
q = qeeS(Q(m)) which gives us the opposite inequality.

For the second part we have

S(m)?™ = (§n Q(m))%™ < 8% n Q(m),
= 89(Q(m)), by the first part,
$(Q(m))?m,

= S(m )Q(m)

again by the first part.
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DEerintTION. The split-variety generated by a set {G;:i€l} of split-groups of the same species n is the
smallest split-variety of species n which contains all G equivalently, the split-variety generated by
{G, i€} is the class of split-groups satisfying the split-laws which hold in all G,. We denote this split-
variety by svar ({G;:iel}). (1.5.11)

DerintTION. The join of two split-varieties &, T of the same species is the split-variety generated by the
set {G;: G, &L or Gy = T }; the meet of &, T is the class intersection of &, T . We denote join and meet
by NI and S NT respectively., The commutator split-variety [F, T ] is that one determined by [S, T'].

(1.5.12)
TrEOREM. The laws of T, SNT are S0 T and ST respectively. (1.5.13)
Proof. The proofs follow easily from the definitions and we omit them.
THEOREM. 4 split-variety & is generated by its finitely generated split-groups. (1.5.14)

Proof. If 7 is the sub-split-variety generated by the finitely generated split-groups of &, let ¢
be a split-law of 7, H belong to ., and o.: Q,, - H. As previously, we may suppose that « acts
non-trivially on only finitely many free generators y,;, so that Q, (< H) is finitely generated,
and therefore g = 1; whence & = 7.

1.6. Products of split-varieties

In this section we introduce a product operation on the variety of all split-groups of species #,
imitating exactly the familiar definition for species 1 (Hanna Neumann 1967, 21.11).

DEerINITION. If &, T are split-varieties of species n then their product ST~ is the split-variety consisting
of all split-groups G of species n which contain a normal sub-split-group N in & such that G|N isin T .
(1.6.1)
It is easy to check that £ is indeed a split-variety (use (1.5.5)).
Lemma. If &, T are split-varieties of species n and G has species n, then S(T(G)) = S(T) (G).
(1.6.2)
Proof. Let ¢ belong to §, and a:Q, — T(G). Let y denote a finite set of y;;’s such that ge{y).
There exists £: Q,, - G, and to each y;; in y some ¢;; in T such that y;;a = ¢;; 8. Hence, defining
v:Q,—0Q, by y;;7 = g, for y;; from y, and arbitrarily elsewhere, we have

qa = qvp = (q7) B-

It follows that S(T(G)) is contained in §(T) (G). The opposite inclusion is proved in a similar
manner.
The next two theorems are immediate consequences of this lemma.

THEOREM. Multiplication of split-varieties is associative. (1.6.3)

TuEOREM. The split-laws of T are precisely S(T). (1.6.4)

One naturally asks if the product, as here defined, has the same distributive behaviour for all
species as for species 1 (21.22 to 21.25 in Hanna Neumann 1967). In order to discuss this we
need lemma 1.6.6 below, for which (1.6.5) is preparatory.

LemMA. Let N be a non-trivial normal sub-bigroup of Q,. Then there exists a subgroup C of A,(N) of

rank oo such that
N = CxA4,(N). (1.6.5)
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Proof. First note that, without loss of generality, we may assume that 4,(Q,) is contained in N.
For, if T'is a complete set of left coset representatives for N n 4,(Q,) in 4,(Q,), we have

4,(Q,) = II*{Y1:be 4,(0,)}
= I*¥{II*{Y{:te TP:be Nn 4,(0,)}
and so, putting I/}l = I*{Y{:te T}, we have
N < 4,(Q,) . N1 4,(Qy) = ¥+ (W1 4,(0,)),
which carries an isomorphic copy of Q,.
Under this assumption it follows that N contains [Y;, ¥,] and hence that a complete set of
right coset representatives for 4,(N) in @, is
U={bs:bel,, ses},
where §'is a complete set of right coset representatives for N n Y, in ¥;; further if S is a Schreier
system (see Marshall Hall (1956, ch. 7)), so is U, and in this case we can write down a free

generating set for 4,(N) as follows. Let ¢(g) denote the element of U which represents ¢, and
then 4,(N) is freely generated by the non-trivial elements in the set

{uxd(ux)1:ue U, x€{yys yss:t€ I}
Now, for b in ¥, and s in S we have ¢(bsyy;) = by (syy;) (where ¥r(syy;) is the element of S repre-
senting sy,,); and ¢ (bsy,;) = (by,;) s. It follows that A4,(N) is freely generated by the non-trivial
elements of
{B(sy2s¥(sy20) ™) 7Y, b(syassy23) b1 beYy, s€S, ieI*).
If we put C = (syy; ¥ (sy1s) ™% [s71, yai']: s€S, i€ IT) then we have
4,(N) = II*{C?:bel,},
whence N = 4,(N) 4,(N) = CxY, as required. Clearly C has rank co.

LEeMMA. Suppose that N is a non-trivial normal sub-bigroup of Q,,. Then, if m is the least natural number
such that Nn B,,,1(Q,) =1, N~ Q,,. (1.6.6)
Proof. Notice first that if we forget the split-group structure on B,(Q,,), then @,, can be thought
of as carrying a bigroup B, isomorphic to Q,, in which 4,(B) = 4,(Q,) and 4,(B) = B,(Q,,).
The previous lemma then yields the existence of C; contained in 4;(N) such that
N = Cy (Nn By(Q,)),
and with rank co. We may now assume inductively that there exist C; contained in

(Nn By(Q,)) n4;(Q,) = 4;(N) (2 <i<m)
Nn By(Q,,) = Cyx...xC,.

with rank oo such that

This completes the proof.
THEOREM. S < S, implies 1T < ST . Conversely, if Tn A,(Q,,) is non-trivial, then KT < ST
implies 5, < Ly in particular if 1T = S, T then S = . (1.6.7)
Proof. Under the conditions imposed on 7, T =~ Q,, by lemma 1.6.6.
THEOREM. (i) (AVSHR)T =AIT VST,
(i) (AANRT = KTNKT,
(i) F(TWNVT,) > STV ST,
and (iv) L(TNTy) K LTINS T,

and the last two inclusions may be proper. (1.6.8)


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

METABELIAN GROUPS AND VARIETIES 295

Proof. (i) Suppose that m is the least natural number such that 7'n B,,,;(Q,) = 1. Then by
(1.6.6), T ~ Q,, and

(510 8y) (T) = (510820 Q) (T)
= (510 @) (T) 1 (S2n Q) (T) = S2(T) 0 S,(T).
Theorem 1.6.4 then gives the result we want.

(ii) Clearly (AAS) T is contained in I A ST . For the converse direction let G belong
to AT NS T so that there exist N;, normal in G, with N; in & and G/N; in I (i = 1,2).
Hence N;n N, is in A &, and therefore G/N; n N, is a subdirect product of G/N; and G|N,,
both of which belong to J7; that is, G is in (#AF) T .

(iii) to (iv) The inclusions shown are immediate; equality fails even for species 1 (examples
8.1, 8.2 in Neumann, Neumann & Neumann 1962).

In terms of the product defined within species z, we can define a product of split-varieties of
arbitrary species, the ‘circle’ product, and this is done in (1.6.9) below. Its advantage lies in the
fact that it provides a framework for relating split-varieties to products of varieties of groups, as
well as providing a convenient formalism.

As a temporary piece of notation write ™ for the variety of split-groups G of species m +n

(where & has species m) such that 4,,,(G) = ... = 4,,,,(G) = 1 and (G, 4,(G), ..., 4,(G))
belongs to . Similarly, W% denotes the variety of split-groups G of species m +n such that
4,(G) =...=4,(G) =1and (G, 4,,1(G), ..., 4,,.,(G)) belongs to &.

DEeFINITION. If &, T have species m, n respectively we write ¥ 0F = S™mT, (1.6.9)

Lemma, If &, S, have species m, then for each natural number n
(A F) = SOV ID, (KAL) = KNS,
W(Fy ) = Oy OF, and O Fn F) = OFA DS, (1.6.10)
The proofs of these facts are straightforward and we omit them.

THEOREM. & 0T consists of all those split-groups G such that (the split-group of species m carried by)
A,(G) ... 4,,(G) is in & and (the split-group of species n carried by) A,,1(G) ... A, o(G) tsin T
‘ (1.6.11)
Proof. G is in £ 07 if and only if G has a normal sub-bigroup N in #®™ with G|/N in ™7,
Now N is in ™ if and only if 4,(N) =1 for m+1 < ¢ < n; and G/N is in ™7 if and only if
A4,(G) ... 4,,(G) is contained in N. Hence G is in ¥ 0.7 ifand only if N = 4,(G) ... 4,,(G) and
the result follows from this.
The split-laws of 0.7 may be described as follows. Let £ be the endomorphism of Q,,,,
defined by
yijg = ]/11+m7’) 1 < t < n3j61+,
Y =1, n+1l <, jelt,

Then, recalling that Q,,, Q, are naturally embedded in Q,, ., we have
THeOREM. The split-laws of & 0T are cl{SU TE} = S(Qin) TE(Q i) (1.6.12)
Proof. The split-laws of 0.7 are S®(™T), MT = 4,(Q,p1) --. Ap(Quin) - TE,

and therefore ST = S(A1(Qpan) oo A Qi) TE(Q i)

= 8(Qmin) TE(Qpin)
= cl(Su T%).
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THEOREM. The circle’ product is associative. (1.6.13)
Proof. Use (1.6.11).
Finally in this section we note the distributive behaviour of the circle product.
THEOREM, (i) (AVSH)oT =Fo0TvFHoT;
(il) (FASL) 0T = S0T NSpoT

(i) Lo (T1ANTy) =L oT NS 0T,
By contrast (iv) Lo (1vT,) 2L oI VS 0T,
with equality if and only if T, T, are comparable (in the case & + €o...0E). (1.6.14)

Proof. (i) follows from (1.6.10) and (1.6.8); (ii) to (iv) are immediate, the only non-trivial
thing being to check when equality holds in (iv). Clearly 7}, 7, comparable is sufficient for
equality; to prove necessity let ¢; be in T3, ¢, be in T, and then ¥ 07,V & 0 7, has a split-law

[yla 01 g’ QZg]:

which is therefore a split-law in the split-group W of species m+n carried by the group
W = Fyu (&) Wr(Fo (7;) X Fp (73)) in the natural way. If 7] is not contained in 7, then, by
virtue of 24.22 in Hanna Neumann (1967), [y, ¢, £] is a split-law in W, and therefore, for the
same reason, & non-trivial implies ¢, £ is a split-law in W; hence ¢, is a split-law in Fg, (J5).
Since ¢, is an arbitrary element of 7; this means .7, is contained in 7.

1.7. Split-varieties and products of varieties of groups
For each split-variety & define the variety #7 by
ST =var{G: GeSL}.

If S hasspeciesnand B; = var {4,(G) : Ge S} (1 < ¢ < n), thenF7isasubvariety of ¥, %, ... B,,.
Conversely, if & = 8, %8,... %, is a given product variety and I is a subvariety of ¥, define

No ={(G,4,,...,4,) :Gell, 4,€B;,, 1 i < n}.

Note that, by virtue of (1.6.11),
Wo = B,0B,0...0%8,. (1.7.1)

From now on we will assume that 8 = 8,%8,... 8, is given and fixed, and regard 7 as a
mapping 7: A4(B,0...0%8,) > A(W) (see definition 4.1.2). Notice that o depends very much on
98 and on the decomposition exhibited: for example, if W = A, A, A, and G is the bigroup
whose carrier G is dihedral of order 8, 4,(G) the normal 4-cycle and 4,(G) some 2-cycle, then G
belongs to (A, A,) o A, but not to Wy0 (A, As).

Lemma. (i) If U < W, S < Wo then Nor < Wand Sro > S

(ii) o710 = 0, TOT = 7. (1.7.2)

Proof. (i) is immediate from the definitions of ¢ and 7, and for (ii) note that for all subvarieties

W of W (1) yields
o < (o) 70 = (lloT) o < Uo,

from which 70 = o follows. The other part follows similarly.
COROLLARY. (07)2 = o7, (70)% = T0. (1.7.3)

DeFINITION. (1) A subvariety 1 of B is closed if and only if Wor = W; a sub-split-variety & of Wo
is open if and only if 10 = L.
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(i1) The interior of a subvariety W of W is Wor; the exterior of a sub-split-variety & of Wo is Lo
(1.7.4)

Because o depends on the decomposition of 9§ chosen it is clear that all the terms defined in
(1.7.4) are relative. From (1.7.3) it follows that interiors are closed and exteriors are open.
Indeed, (1.7.2) (ii) yields

CoroLLARY. Every o is open and every S is closed. (1.7.5)

THEOREM. The mapping o is a meet-homomorphism and the mapping T is a_join-homomorphism; and To
need be neither a meet-, nor a join-, homomorphism. In particular o may not be a join-homomorphism and
T may not be a meet-homomorphism. (1.7.6)

Proof. It is evident at once from the definitions that o is a meet-, and 7 a join-, homomorphism.
(This will be brought out later also when we describe the laws and split-laws of &7 and Ue
in (1.7.15).) The following examples demonstrate the other statements; in each case let
0o A(AA) > A (Ao NA).

ExAmPLE. 70 is not a meet-homomorphism. (1.7.7)

Note first that Ay A, 09 < (Ay A A AW,) 07y; for if

G={a,b:a®=0%=1,a"=a% then (G,{a),{b))e (WU AAA,) y9—UyUy0,.
Hence

(U0 AA Ao W) 70y = Wy0 UyToy = Wy WUy < (Wp A A AW,) 0
= Wy Uy A AW, 0y = y0 Ty A Ao Uy 707,
ExamPLE. 10, is not a join-homomorphism. (1.7.8)
First, (A, A v AW,) 0y > Ay Aoy v AN, 07y we show that the bigroup H carried by
Cawr Gy (Cywr Cy)g)
in the natural way belongs to (2, A v AW,) oy but not to A, Aoy v AW, 0. For, Ay oy v AN, 0
has a bilaw [43, 23] (= [y, 22]?), and it is easy to verify that H does not; and a special case of
an unpublished result by L. G. Kovécs, namely
A2 A Wy AW, = Ay A v AW,

makes it easy to show that H is in 9, % v AW,

Finally, (91,09 v %o W) 709 = (Wy0 AT v Ao A7) 0

= (U AV AN,) 0 > Wy Uoy v UNy05 = Uy0 Aroy v Ao Uy 707,

It is unlikely that o7 is a homomorphism in general, but I have been unable to produce
examples to show this.

TrEOREM. The following conditions are equivalent:

(i) o is one-to-one;

(i1) every subvariety W of W is closed;

(iii) 7 is onto. (1.7.9)

Proof. From (1.7.2) (ii), (loT)o = Uo so that if o is one-to-one then Uo7 = U; that is, (i)
implies (ii). Clearly (ii) implies (iii). Finally, if 7 is onto, and U,o = U,0, write 7 = U,
7 = U, and then S 707 = F 707 so that #17 = Fr, or U = U,.

In an entirely similar manner one proves also

THEOREM. The following conditions are equivalent:

(1) o is onto;

(i1) every subvariety & of Lo is open;

(iii) T is one-to-one. (1.7.10)

37 Vol. 266. A.
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ExampLE. If oy : A(AA) - A (Ao A) then neither oy nor T is one-to-one or onlo. (1.7.11)

For Go Ar = Ao €7 so that 7 is not one-to-one and o7, is not onto. To show that o is not one-to-
one is more difficult, and we use the description of A(A,A,), p prime, provided by
Newman & Kovics (1970); they show, inter alia, that the subvariety U, of 2, A, deter-
mined by the additional law TT}Z5[%;, %15 .0y X 1, ¥gp15 -os Xap] (A > 2) properly contains
A, W,y AMypy. It is easy to verify that if G is in U, 0, then G is in A, A, AN, and so
Moy = (A, Ay A Nyy_y) 0. In other words o, is not one-to-one and, by (1.7.9) 7 is not onto.

The remainder of this section will be concerned with relationships between the free groups
of subvarieties 11 of ¥ and the free split-groups of o, and also with that between free split-groups
of (< Wo) and free groups of L7.

THEOREM. The split-free split-group of rank (my, ..., m,) of By0By0...0B,, is carried by the iterated
verbal wreath product X, defined (downward) inductively by
X; = Fppy(By) wr; Xppa, 16{1,..,n— 1}
(where, as in (1.5.7), we choose m; = 0 if B; = €). (1.7.12)
Proof. Now the split-laws of 8,0...0%,, are determined by V(Y;), ¢ = 1, ...,7n since a split-

group G belongs to 8,0...0%,, if and only if it has these split-laws. The split-free split-group of
rank m in B,0...0%,, is, by definition, Q(m)/S(Q(m)) where

S = d({Vl(Yl), ) Vn(Yn)})
If §; = V(Y;), then S(Q(m)) is the normal closure in Q(m) of all §;(Q(m)). We construct

F,(B,0...0%8,) by successively factoring out of Q(m), the normal closures of the §;(Q(m)).
Write Q(m) = 4, B, in the usual notation: and at the first stage, since

A, = TI*{¥?:be B,)
(where f'l* e ffn is the carrier of Q(m)), and S,(Q(m))?™ = V;(4,), we get
AV(Ay) = (TPHE, (B,) : be B) V(I1*(F,, (8,) : be By))
= B, [I{F,, (B,) :be By}
(see 18.22, 18.23, 18.31 in Hanna Neumann (1967)). Hence
0 (m)[$,(Q(m)) %™ = F,,,(By) wre, (I%{T;:2 < i < n).
Using theorem 1.4.12 and well-known properties of verbal wreath products, we arrive, by

induction, at the assertion of the theorem.

THEOREM. Let & be a subvariety of Wo and let {a;;: 1 < 1 < n, j€J} be aset of split-free generators for
the split-free split-group F,(F) of rank r = (my,...,m,), where m; = r = |J| if y; is not in S, and
m; = 0 otherwise. Then the sub-group F of F,(&) generated by the elements

by = ay5a95... ay5 JEJ,

(if my = 0 put ay; = 1) is free on {b;:j € J} and is isomorphic to F,(S7). (1.7.13)
Proof. We verify first that if G is in% and if «: {b;:jeJ}— G, then « can be extended to a
homomorphism of ¥ into G. Write, for each j in J,

bjoo = ay;az; ... an;5, ai;€A,(G),1€{l, ..., n},
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and define g: F,(&) - G by

ai;fp = ay, i1e{l,..,n},jeJ,
and (1.5.8). Then B|F provides the extension of @ we want. Finally note that if H is in &7 then
there exist G, in (iel) such that H is a factor K/N where K is a subgroup of II{G;:i€l}, and
if y:{b;:jeJ}—H is any mapping use what we have just proved to define ¢: F— K such that
(b;8) N = b;y (jeJ); then 6 followed by the natural homomorphism from K onto H does what
we want.

CoroLLARY (cf. Smel’kin 1965). Let F,(I8), the free group of X8 of rank r be fieely generated by the
set{f;:jed, |J| = r}; andlet F (W), the split-free split-group of By0...0B,, of rank r = (my, ..., m,,)
(where m; = r unless B; = & in which case m; = 0), be freely generated by {a;;:1 < i < n,jeJ}. Then
the mapping v,: F, () - F,(Wo') defined by

. Sive = ayja9;...0,5 JEJ,
can be extended to a monomorphism. (1.7.14)

Proof. From (1.7.13) F,(2B)v, is (isomorphic to) the free group of rank 7 of Wor on free
generating set { f;v,:jeJ}. However, Wor = W by virtue of 22.32 in Hanna Neumann (1967).
Hence the mapping a,;a,; ... a,;—f; (j€J) can be extended to a homomorphism; that is, v, is
one-to-one.

TurEOREM. The split-laws of No are based on U{V,(Y;), U(Q,):1 < i < n}; and U(F, (o)) carries
cl(Uv,).

The laws of S are based on those of X together with (SN Foo (W) Vo) VSl (1.7.15)

Proof. Now F o, (330)|U(F (o)) belongs to o and U(Q,,) is certainly contained in the split-
laws of lo; this takes care of the first assertion. That U(F,(8o)) = ¢/(Uv,) is proved by standard
tricks which we here omit.

To prove the remaining statement, let g, : Fo,(88) = F o (1) and py: Fop (W0) - F (&) be the
natural homomorphisms, and let v: F,(¥7) - F, (#) be defined by

(fj/h) 14 :fj Voo g, je{l: 2, }
Then (1.7.13) yields that v extends to a monomorphism. Hence w in F,(2) is a law in %7 if
and only if wy, = 1, that is if and only if wp, v = wv, u, = 1, that is if and only if wv,, belongs to
SN FL (W) Voo

37-2
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CHAPTER 2. MISCELLANEOUS RESULTS

In this brief chapter we record some general results about lattices of split-varieties, and then
introduce the bivarieties, with which the remainder of this paper is principally concerned.

2.1. Lattices of split-varieties

TuroreM. The split-varieties of the same species n form a modular lattice with respect to (the inclusion
order and) the join and meet defined in (1.5.12). (2.1.1)

Proof. By virtue of (1.5.4) and (1.5.13) it is sufficient to show that the normal, fully invariant
sub-split-groups of Q,, form a modular lattice with respect to the inclusion order. This is clear,
since if §, T are normal and fully invariant in Q,,, $n T and ST are also, and therefore the
normal, fully invariant sub-split-groups form a sublattice of the modular lattice of the normal
subgroups of @,,.

Because of this modularity, many results which are essentially lattice-theoretic can be taken
over to our situation; all here are quoted without proof. The first is well known, particularly
as a statement about varieties of groups.

THEOREM. IfF is a split-variety which has a finite basis for ils split-laws, then every sub-split-variety
of & has a finite basis if and only if every descending chain of sub-split-varieties of & breaks off.  (2.1.2)

Of course, if there existed an infinite descending chain, 8B; > B, > ... say, of varieties of
groups, then we could trivially construct an infinite descending chain of split-varieties of
arbitrary species (8,0% > B,0S > ... where & is any split-variety).

The second result noted here I first proved for varieties of groups (see 16.25 in Hanna Neumann
1967). It is, however, a much older result about modular lattices, due to Pickert (1949).

THEOREM. If S, T are split-varieties of the same species, each of which has descending chain condition
on sub-split-varieties, then S v I~ does also. (2.1.3)
By entirely similar methods one also proves

THEOREM. A split-variety S has descending chain condition on sub-split-varieties if and only if there
exists a subvariety Sy of S such that S has descending chain condition on sub-split-varieties, and also all
descending chains between & and <, break off. (2.1.4)

2.2. The bivariety Ao A

From now on we will be concerned almost exclusively with varieties of bigroups (bivarieties),
mostly, indeed, with subvarieties of o 2. It is convenient to modify our notation to suit this
situation. Thus we shall drop double subscripts and write Y,, * Z, for the carrier of the absolutely
split-free bigroup of rank (m, n), with split-free generating set

{y;:iedy, || =miu{z;:jed, | L] = n}.

We now restate several results for the case of bivarieties, all of them special cases of theorem
1.4.5.

TueorREM. If q is a biword, then q is equivalent to a set Vi UV, U S of uniform biwords, where Vy, V, are
contained in Y, Z,, respectively, and where each element of S is a product of powers of left-normed commu-
tators each of which has entries from both {y;:icI*} and {z;:je I*}. (2.2.1)
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Proof. Put V, = {q;: T = I}, Vo, ={¢,: J = o} and § = {g,: J & J;, J & J,} using the notation
of theorem 1.4.5 and these sets satlsfy the assertion of the theorem.

COROLLARY Each subvariety of NoRB is determined by the bzlaws of WoB together with a set
{yi}u 7us of uniform biwords, where m is a non-negative integer, V is contained in Z., — V, and where
each element of S is a product of powers of commutators of the type

(42, w1, ..o, w,]
with each w;, a left-normed commutator, not lying in cl(V U I/}), whose entries are from {z;, z7": jeIt}.
(2.2.2)

Proof. If 7 is a subvariety of Ao B, then I is contained in A,,0 B’ (m > 0, B’ < B). Choose
m minimal so that {y7", [ y;, ¥»]} is @ basis for the laws of var {4,(G) : GeJ}. If 8’ is chosen mini-
mally, write ¥ for a set of uniform words which determine ¥’ modulo V.

By (2.2.1) we are left to consider ‘genuine’ commutator biwords in T, call one ¢, say. Now ¢
is equivalent to a set of uniform biwords ¢;, by (1.4.5), and each ¢, is a product of left-normed
commutators, say t; = ¢;C,... ¢ Since [y, ¥,] is a bilaw in J we may assume that each ¢; has
one, and only one, entry from the set {y,, y3': i€t} and since ; is uniform, that each ¢; has one
and only one entry from the set {y,, y7'}. Modulo the bilaws of %0 % we then have

= [y, 0w, .., w1, 1K<k
for some left-normed commutators w, ..., w#. This completes the proof.
¥ P p

CoRrROLLARY. Every subvariety of Wo A is determined by the bilaws of oW together with a set
{y, 283U S of uniform biwords, where m, n are non-negative integers, and where every element s of S is a
product of powers of commutators of the type

[!/1: Z)ltl> ceed Z,{\T]
with r depending only on s, and Ay, ..., A, all non-zero; if n is not zero then A; < n, je{1,...,r}. (2.2.3)
Proof. From (2.2.2) we have that every element of S can be written as a product of powers of
commutators of the type [y, 2%, ..., 2], where ¢; = + 1 and where {7, ...,7,} = {1,...,7}, say.
If, for example, 7; = i, then, since

[ys, 28] [90, 28] 7 (90, 28] = (91, 28 23
we may replace this product by one of the desired type. That the z’s can be re-arranged into
increasing order of their subscripts follows since, modulo the bilaws of 2o U, y, is in the centralizer
of the derived group of a metabelian group.

CoroLLARY. Every sub-bivariety of Wo A is determined by the bilaws of Wo A together with a set
{y?, 223U T of uniform biwords, where m,n are non-negative integers and where every element of T is a
product of powers of commutators of the type

[y 112385 ..y 0 277]

With phyy ... 1, natural numbers and €, ...,€, = +1; moreover, if n >0 then py <n and €¢; =1,
te{l,...,r} (2.2.4)
Proof. Use (2.2.3) and the commutator identity (0.2.1).
Finally, in this chapter, a result of a completely different character. Note that the bivariety
Ao A consists of bigroups which are metabelian qua groups. One of the nice features of such
groups, from a varietal standpoint, is that finitely generated ones are residually finite, and
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therefore every subvariety of A% is generated by finite groups. We implicitly adapt this very
deep result of Philip Hall (1959) to our situation, in the next theorem.

TuEOREM. A bigroup G is residually finite qua bigroup if G is residually finite. Consequently every
sub-bivariety of Ao N is generated by finite bigroups. (2.2.5)

Proof. Let g be a non-trivial element of G. There exists a normal subgroup N of G not containing
g such that |G : N| is finite. Write

A(G) N N =4, 4,(G)n N = 4,
and then |4,(G) : Af| = |4,(G) N: N| and |4,(G) : 45| = |4,(G) N: N| are both finite. Hence
|G : AF 4| < |41(G) : 4AF| . |45(G) : 45|

is finite. Finally put N* = (4F 4%)%, and then 4f 45 < N* < N so that N* is normal, of finite
index and avoids g; and as it carries a sub-bigroup of G, the proof is complete.
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CHAPTER 3. CRITIGAL BIGROUPS IN o A

In this chapter we define critical split-groups, by analogy with critical groups, (51.31 in
Hanna Neumann 1967), deduce somc elementary facts about them, and then turn our attention
to the structure of certain critical bigroups in %o 9.

3.1. Critical split-groups

DEFINITION. A finite split-group is critical if it is not in the split-variety generated by its proper sub-split-
groups and proper quotient split-groups. (3.1.1)
Clearly we have

THEOREM. If G s a split-group and G is a critical group, then G is critical. (3.1.2)

TrEOREM. A critical split-group has a unique minimal normal sub-split-group. (3.1.3)

Proof. If not, then there exist non-trivial normal sub-split-groups Ny, N, of G with N;n N, = 1;
and then G is a subdirect product of G/N;, G/N,.

An example of the situation in theorem 3.1.2 occurs when G is the symmetric group of permu-
tations on three letters, 4,(G) the normal 3-cycle and 4,(G) a 2-cycle. However, the converse of
(3.1.2) is not true: the carrier of a critical split-group need not be a critical group. An example
of this is the bigroup G carried by the wreath product G = C,, wr (C,, x C,)) in the natural way:
A4,(G) is the base group of G and 4,(G) is the top group.

Clearly a split-group which is monolithic as a group has a unique, minimal normal sub-split-
group. In certain cases the converse is true:

Lemma. If G is a bigroup which has a unique minimal normal sub-bigroup, and A,(G) is abelian, then
G 1s monolithic. (3.1.4)

Proof. Suppose that N is a non-trivial normal subgroup of G. If N n 4,(G) is not 1 then we are
finished since N n 4,(G) carries a normal sub-bigroup of G. Hence suppose that Nn 4,(G) = 1;
then as 4,(G) is normal in G we have that N centralizes 4,(G) and therefore that

Ca(4,(G)) > 4,(G).

It follows that 1 < C(4,(G)) n A,(G) < G. Hence we have a contradiction unless 4,(G) = 1
in which case the thcorem is trivially true.

b

In the bivariety 2o 9 the conditions of (3.1.4) are certainly satisfied. In such cases we shall
use ‘monolithic’ for brevity, and denote the monolith of G by oG. Note that the carrier of G
is oG.

LemwMmA, If a split-variety S is generaled by finite split-groups then it is generated by critical split-groups.

(3.1.5)

Proof. Let &, be the sub-split-varicty of & generated by the critical split-groups in & If & is

a proper subvariety of &; then there exists a finite G in &~ &, which we may suppose to have

minimal order. Every proper sub-split-group and every proper quotient split-group of G then

lies in 4, but G does not. This means that G is critical. We have thus produced a contradiction
and hence & = &

Lemma (cf. theorem 4 in Powell 1964). If G is a critical bigroup and A,(G) is abelian, then 4,(G)
contains a unique maximal normal subgroup of G. (3.1.6)


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

304 R. A. BRYCE

Proof. If N;, N, are maximal normal subgroups of G in 4,(G), then N, 4,, N,A, carry sub-
bigroups of G (writing 4; = 4;(G), ¢ = 1, 2). We shall show that G esvar {N, 4,, N, 4,}. Suppose
that ¢ is a bilaw in both N, 4, and N,4,. Since N, N, = 4, and since 4,(N; 4,) = 4,, we may
suppose, by virtue of (2.2.2), that ¢ is a product of commutators of the form

[yb Wiy eees wt]il

for some words wy,...,w; in 4,(Q,). Let a:Qy,— G be an arbitrary morphism. We write
Y1& = @14y, a; € Ny, ay€ N, (not necessarily uniquely). Define «;: Q,— N;4,, j = 1,2, by

noy =a;, z;e;=za, j=1,2, ielt
Then [y Wy, ey W] = [y, wy ..., weot]
= (Y100, Wy Oy, eeey WOy ] o [ Yy Aoy WyOlg, ..., Wy o]
Hence qa = (ga,) (qoy) = 1, showing that ¢ is a bilaw in G. This completes the proof.

Finally in this section an analogue of the well-known fact that critical groups which are
nilpotent, are p-groups.

TurorREM. If G is a finite monolithic split-group and G is nilpotent, then for some prime p, G is a p-group.

(3.1.7)

Proof. If G is nilpotent and finite, its Sylow subgroups are fully invariant, hence carry normal

sub-split-groups whose pair-wise intersections are trivial, so G cannot be monolithic unless G has
only one Sylow subgroup.

3.2. Non-nilpotent critical bigroups in Wo A

Throughout the remainder of this chapter G = (G, 4, B) will be a critical, non-nilpotent
bigroup contained in A o A ; the notation introduced in theorem 3.2.1 will also be carried through.

TrEOREM. If G = (G, 4, B) € Wo W is critical and not nilpotent, then
(1) A1is a p-group, for some prime p, it is self-centralizing in G, and is the derived group Gy = G’ of G.
If B = Hx K where H is the Sylow p-subgroup of B, then
(ii) F = AH is the centralizer of the monolith oG of G, and F is the Fitting subgroup of G;
(iii) K s a p'-cycle which acts faithfully and irreducibly on oG.

Moreover
(iv) Every non-trivial element of K acts fixed point free on A,
and
(v) K acts faithfully and irreducibly on AN,
where
(vi) N = Ar[A, H] is the unique maximal G-normal subgroup of A. (3.2.1)

Proof. Since G is critical it has a unique minimal normal sub-bigroup oG whose carrier, by
lemma 3.1.4, is the monolith ¢G of G.

If A were not a p-group, we could write it as a direct product of Sylow subgroups, each of which,
being characteristic in 4 would be normal in G, contradicting the monolithicity of G; hence 4
is a p-group for some prime p. If 4 were not self-centralizing, then 4 < C4(4) would imply
1 < Cyx(A4) n B € G, again contradicting the monolithicity of G.


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

METABELIAN GROUPS AND VARIETIES 305

Since B is abelian, G’ is contained in 4; and since G is not nilpotent, there exists an integer ¢
such that
L+ Gy = Ggep = ... < 4.
By a result of Schenkman (1955), G splits over Gy, say
G =GyBy Gyn By = 1.

Therefore 4 = Gy (A n By); but An By is normal in B since 4 is normal in G, 4 n B, is normal
in 4 since 4 is abelian: hence 4 n B, is normal in G, and so 4 n B, = 1 because G is monolithic
and 4 n B, avoids Gy. That is,
A<Gy< G <4,
or G' = A. This disposes of (i).
We can describe oG more exactly: if F has class ¢ precisely, and if F, has exponent p", then

oG =Fiy ' ={zeZ(F):zr = 1}. (3.2.2)

For, FZ™" is non-trivial and characteristic in F, therefore normal in G, and so contains ¢G. If
this inclusion were proper then, by Maschke’s theorem, oG would have a non-trivial, K-admis-
sible complement in F; ™" which, being in the centre of F, would be normal in G, a contradiction.
A similar argument proves the remainder of (3.2.2).

The same argument can be used to prove that K acts irreducibly on oG. We shall now show
that K acts not just faithfully on oG, but that every non-trivial element of K acts fixed point free
on 4. To this end suppose that there exists a non-trivial element & of K, and a non-trivial element

x of 4 such that PUNI

If we write A ={acd:d =ad},

then 4 is a non-trivial normal subgroup of G in 4 and, by a well-known result of representation
theory (for example, lemma, p. 455 in Higman 1956), 4 has a B-admissible complement A*
in 4. But then A* is normal in G since 4 is abelian and therefore A* = 1 since G is monolithic;
that is 4 = A. In this case k) is central in G, contradicting the existence of a monolith in G. It
follows that a non-trivial element of K fixes no non-trivial element of 4. Thus F'is the centralizer
of oG, K acts faithfully (and irreducibly) on oG and so K is cyclic, and F is the Fitting subgroup
of G. This completes the proof of (ii), (iii) and (iv).

By lemma 3.1.6 there exists a unique maximal normal subgroup of G contained in 4; call it N.
Hence A47[4, H] is contained in N since both 4? and [4, H] = F' are proper subgroups of 4 and
both are normal in G. If the containment is proper, then N/A4?[A4, H] has a non-trivial K-admis-
sible complement 7T/A?[4, H] say, in A|AP[A, H]. But then 7 is normal in G and 7 is not
contained in N, a contradiction to (3.1.6).

To finish the proof of the theorem we have to show that K acts faithfully on A/N, and to do
this we use lemma 3.2.4 below (which will be useful later on as well): if ¢ is in 4, £ in K and
[a,k] in N, then since N is characteristic in G, N admits the inverse of the automorphism o
corresponding to £ in (3.2.4) below; that is

a=[ak]ateN.
Hence K acts faithfully on 4/N. The proof of theorem 3.2.1 is now complete.
DerintTION. 4 bigroup Gy = (G, 4y, By) in Wo N is critical-like if By = Hyx K, where K, is
cyclic and acts fixed-point-free on Ay, (3.2.3)
38 Vol. 266. A.
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LemMa. If G is critical-like and k is a non-trivial element of K, then the mapping o : Ay— A, defined by
ao = [a, k], aed,,

is an automorphism of A, which extends to an automorphism of G,. (3.2.4)

Proof. Define o on the whole of G, by

(ba) o = bla, k], aed,, beHyxK,.
This is an endomorphism since
((b141) (byas)) v = (bybyaieas) o = byby[atzay, k] = by by[ale, k] [ay, k]
= b1by[ay, k1% [ay, k] = by[ay, K] . byas, k] = (b1ay) . (byas)

and « is an automorphism since G, is finite and 4[4, k] = 1 implies 4 = 1 and [a, k] = 1, which
gives a = 1.

Lemma. If G, is critical-like, |Ky| = t, and ay, ..., a,_, are elements of A, such that, for all k in K,

t-1

.]:[0 [a;, k] =1, (3.2.5)

thengy = ... =4, , = 1. ' (3.2.6)

Proof. Put £ = 1 and then a4, = 1; we may suppose, therefore that the product is over the

range 1 <7 < ¢—1. Let K, = <k,). Substitute £} (1 <j < ¢—1) for k£ in (3.2.5) in turn, and, using
the terminology of (3.2.4) with a; corresponding to 4, we get

t—1
Maai=1, 1<j<t-1.
i=1

Working in the endomorphism ring of 4, and utilizing the fact that a;o; = a;a; (1 < 4,5 < £—1)
we deduce that '
a,det (o) =1, 1gr<i-—1
Now det (af) is the van der Monde determinant, and
t—1
det (o) = (T o) (I (0
j=1 u<v
each «; is an automorphism of 4,, and det («f) will be an automorphism of 4, if we can show
that for u < v, &, — ., is an automorphism of 4,: for ae 4,
a(a‘u—a’v) = (aa‘u) (aa‘v) = [a: /‘Cf)‘] [a’ g]—l
= a7 'd¥ . a~*a = (a~takt*) kS = [a, k§V] k6

and therefore a(o, —o,) = 1 implies a = 1. Hence a; = ... = a,_, = 1 as asserted.

LemMaA. Let G, be critical-like and | K| = t. If to each s-tuple p. = (ptq, ..., 1s), where 0 < p; < t—1
i€{l, ..., s} there is an element a(w) of A, such that for all k, ..., k, in K,

g[a(u)’ﬂlkly el k.s] =1,
then a(p) = 1 for all p.. (3.2.7)
Proof. For each v in {0, ..., — 1} write
a, = 1 [a(y")’ﬂlkl’ ---uus—lks—-l];

V= jts
-1
then 11 [a, vk] =1
v=0

for all £, K. Hence by (3.2.6), ¢y = ... = a;_; = 1. We may now use induction to complete
the proof.
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3.3. The criticality of G

We aim to show in this section, that if G is as in (3.2.1), then G is a critical group. By lemma
3.1.4 and (1.2) of Kovacs & Newman (1966) it suffices to show that G is not contained in the
variety generated by its proper subgroups. To this end we calculate the maximal subgroups of G.

LemMA. If M is a maximal subgroup of G then either

(a) M = AHK,, where K is maximal in K;

(b) M = AH,K, where Hy is maximal in H,
or (¢) MnF = NH. (3.3.1)

Proof. Suppose that, as in (1.2.8), o, is the retraction of G to B. Then if B properly contains
Mo, we must have that M contains 4 for, if not, then AM = G and therefore

B =Goy, = (AM) oy = Mo,.

Hence M = A(M n B) and clearly M n B must be maximal in B; that is, M has the form (a) or
the form (b).

Assume, therefore, that Mo, = B; then M n F = NH. For, if M does not contain N,G = NM
andifeaed— N,

a=axm, xeN, meM, (3.3.2)

and so ¥7'a = me (4 —N)n M. By virtue of (3.2.1) (vi), 4 is generated qua B-operator group
by any element of 4 — N, and since Mo, = B and 4 is abelian,

A= (m)B = (m)M < M.

In other words, M = G; hence M contains N. To finish off this case we show thatifaisin 4 — N
and % in H, then ha is not an element of M. For, if k is non-trivial in K, there exists ' in 4 such
that ka' is in M; and if /a belongs to M,

[ka', ha) = [kd', a) [ka', k] [ka', k, a]
= [ks a] [a,> k]
belongs to M whence (as [4, H] < N < M), [k, a]™ = [a, k] e M. From (3.2.1) (v),
[a,k]e (A—N)n M, and an argument similar to that which disposed of (3.3.2) shows that

M = G. Hence ha is not an element of M. It follows at once that Mo, = B implies
Mn F = NH,

as required in (c).

Note that not all the maximal subgroups of G are sub-bigroups. The ones which are not are
those with M nF = NH containing ka (a€A— N, ke K); in these cases, M = (NH,ka). A
similar argument to the foregoing yields

LemMA. The maximal sub-bigroups of G are precisely FK,, AH,K and NHK, where H, is maximal
in H, K, ts maximal in K. (3.3.3)

We are now ready to prove

TueoreM. If G = (G, A, B) e Wo W is critical and not nilpotent, then G is a critical group. (3.3.4)

Proof. Since G is critical, there exists a bilaw ¢ of the maximal sub-bigroups of G which is not
a bilaw in G itself. Because of the nature of the maximal sub-bigroups of G, ¢ may be taken to
be a genuine commutator biword, and using (2.2.3) we may assume ¢ to take the form

s
q= nl[yb Z%“) ceed Z:“ir]eia
i=

38-2
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where ¢; = + 1, a;; > 0, i€{1, ..., s}, j€{1,...,7}. Consider the word

W= 1_—'[1 [xb Ko x%‘il, (XR3] xﬁ—%]ei-
Then w is a law in every maximal subgroup of G, but not a law in G itself. For, if M is a maximal
subgroup of G, then from (3.3.1) it follows that (M'. Moy, M’, Ma,) is a proper sub-bigroup
of G; and each value of w in M is obtained by choosing arbitrary elements m,, ..., m,, of A and

evaluating

8 8
.Hl [my, mg, mgin, ..., myils]% = Hl [my, My, (Mg 0y)®a, ..., (M, 07y) %]
= =

this is clearly a value of ¢ in a proper sub-bigroup, and is therefore 1. Hence w is a law in M.
On the other hand, since ¢ is not a bilaw in G, there exist elements a of 4, by, ..., b, of B such

that s

1 [0, b3, .., bEo]es = 1.

Fal

From (3.2.4), if k is a non-trivial element of K, there exists ¢’ in 4 with a = [/, k]; it follows that

S
T1 [,k b3, ..., b]
b

is different from 1 and therefore that w is not a law in G. By the remark at the beginning of this
section, G is critical. We shall see later that this theorem has a strong converse.

3.4. The bigroup F*

In this section we show that, in a sense, the bivariety generated by the critical bigroup G is
determined by the bivariety generated by a certain sub-bigroup of G' which sometimes turns
out to be a little more manageable.

Recall that (3.2.1) (vi) ensures that if 4, is an element of 4 — N, then 4 is generated, qua
B-operator group, by 4, Suppose that one such g, is chosen and fixed from now on. Write
Ay = {ag)?, Fy = 4yH and F* = Fy= (Fy, 4, H).

This definition depends on 4, but is unambiguous up to isomorphism, as the following result
shows.

Lemma. If ag, ay belong to A— N, then the mapping ag— a, can be extended to an isomorphism of the
corresponding sub-bigroups F and F. (3.4.1)

Proof. Suppose that r = r(ag, hy, ..., h;) = 1is a relation among the generating set {ay} U H for F,.
Every relation in H is a relation in both F, and F;, so we may assume that  takes the form

¢
r= [[afhi =1
i=1

for some integers a;. Now there exist b, ..., b, in B such that

u
a, = TI ag®i
for some integers f;. Therefore =1
3 u aih;
(@, hyy s hy) = 11 { [} agjbj}
i=1lj=1
u t ﬂjbj . .
=11 { Il "‘i’”i: , since 4, B are abelian,
j=1li=1
=1,


http://rsta.royalsocietypublishing.org/

/|
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

METABELIAN GROUPS AND VARIETIES 309

Hence, by von Dyck’s theorem, the mapping a,—a, and the identity mapping of H extend to
a morphism Fj— F;. Similarly, the mapping a, —+a, and the identity mapping of H extend to
a morphism F; - F,. Consequently each is an isomorphism.

LemmA. F and F* generate the same bivariety. (3.4.2)

The proof of this is similar to that of (3.1.6), and we omit it.

It would be pleasant if it turned out that F* was a critical bigroup. However, this is not in
general the case. The best that can be said is (3.4.3) below. The trouble comes from the fact that
F* need not be monolithic; for example, there exists a non-nilpotent critical G in which F* is
carried by the central factor group of C,wr C,: this topic will be taken up again in (3.4.7).

Lemma. If G is as in (3.2.1), then F* is not in the bivariety generated by its proper sub-bigroups.

(3.4.3)

This will follow from the next lemma, which is much more important from our point of view
in the next two chapters.

LemMMA, Let g be a commutator biword and t a positive integer. There exist biwords ¢y, ..., 4., depending
on g, t, such that if q is a bilaw in a critical-like bigroup with |Ky| = ¢, then ¢y, ..., q, are bilaws in
(4o Hy, Ay, Hy) = F,.

Conversely if (Gy, Ay, Hy x K;) is in Ao A, exp K, divides t, and ¢, ..., q, are bilaws in

(Al H1> Al) Hl) = F1>
then q is a bilaw in G. (3.4.4)
Proof. Using (2.2.4) we may assume

s

€ €, :

q= 'Hl [y pia 280, . g 257] %,
i=

where p;; are all natural numbers, and ¢;; = + 1. Suppose that ¢ is a bilaw of the critical-like
bigroup G,. Consider the biword

S
sk — €7 € €q €37 i
g* = Hl (Y15 a1 2180 2080y oo sy 2557 281
i

In this expression for ¢* expand each commutator, using repeatedly the identity (0.2.2) modulo
the bilaws of 2o . We get a product of powers of commutators each of which has y, as first
entry and some zj', je{r+1,...,3r} in each other entry. Working modulo the bilaws of o 9
we can collect to the front of each commutator all zf' with je{r+1, ..., 2r}. Hence there exist
biwords ¢f, ..., ¢& such that, modulo 2o %A(Q,),

U
* * 0 7
7" = 'Hl [q‘l, > Ail Zi%ors ooy Air Z:’.;’T],
i=

where ¢f, ..., ¢& are biwords which are products of powers of commutators each of which has
as entries, y, in the first place, and zj, je{r+ 1, ..., 2r} in the other places; and where Ny ==*1,
ie{l, .. ul,je{2r+1,..., 3}

Now consider

u
sk % ; ;
" = Hl[%' > Ail Zlgl-lz“ LERE) Air z:%‘r],
i=

where §;; = 9;;if 9 = 1, and §;; = t — 1 if 9,; = — 1. Making repeated use of the identity (0.2.1)
we can write, again modulo 2o A(Q,),

v

Hk 4

q - Hl [qi> Vi1 Z140ps o5 Vip Z3r] '
i=
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where each ¢, is a linear combination of ¢;’s, where 0 < v; < t—1 all 4, j, and where ¢’ is a
(possibly empty) product of powers of commutators in each of which at least one of zy 4, ..., Zs,
occurs raised to a power which is a multiple of z.

Now suppose that «:Qy,— F is arbitrary and, for the moment, fixed. With each choice
ki, ...k, in K, and o, associate a morphism /: Q,— G, such that

?/’iﬂ =Y; %, iEI+,
ZinB =z;0, Zpof =Fk; je{l,..,r}
Then if f*: Q,— G, is such that
Y:iP* =y, 1€t

Z?ﬂ* = (Z;,OL) ./Cj, je{l, ~-~>r},
we have

v
L=gp*=q*"f=q"*p = ,Hl [g:0 Vir ks ooy Viri],
i

and this for all such f. Hence, by (3.2.7), ¢, = 1,¢€{1, ..., v}, and since a was arbitrary, ¢y, ..., ¢,
are bilaws in F,,.

Conversely, suppose that ¢y, ..., ¢, are bilaws in (4, H;, A, H;). Then if f*:Q,— G, is any
morphism we can construct a: Q,—> F, and f: Q,— G, reversing the procedure in the foregoing
proof. Then, so long as exp K, divides ¢, we have ¢;a = ... = ¢,a = 1 implies ¢#* = 1 and so

g is a bilaw in G,.

Remark. The argument above is, of course, essentially a trigroup argument. However, it
seems easier to treat it as we have done, than to develop the necessary conventions and
terminology involved in considering G, as a trigroup. (3.4.5)

Proof of (3.4.3). Since G is critical, there is a (commutator) biword ¢ which is a bilaw in every
maximal sub-bigroup of G, but not in G itself. In particular ¢ is a bilaw in the maximal sub-
bigroups whose carriers are of the type

AHyK, NHK, H,maximalin H,

and these sub-groups are critical-like. It follows, therefore, that if ¢y, ..., ¢, correspond to ¢ by
(3.4.4), then ¢y,...,q, are bilaws in all (4H,, A, H,) and in (NH, N,H). However ¢,...,¢,
cannot all be bilaws in F since ¢ is not a bilaw in G. It remains to remark that the maximal
sub-bigroups of F* are precisely those carried by AH, n F*and NyH = NHn F*, by an argument
similar to that of (3.3.1), and that they generate the same bivarieties as their counter-parts
in F.

We now prove a partial converse of (3.4.3). First note that, by (3.4.6) below, F* is critical if
it is monolithic. In (3.4.7) we show that critical bigroups G with prescribed, critical F* and
prescribed | K| always exist, are unique, and that as far as generation of sub-bivarieties of Ao %
is concerned, no others are necessary.

THEOREM. If G belongs to o N, is monolithic, and not in the bivariety generated by its proper sub-
bigroups, then G is critical. (3.4.6)
Proof. Let G = (G, A, B). It follows as in (3.1.6) that there exists a unique maximal normal
subgroup N of G contained in 4, and hence that N = 4?[4, H] where 4 is a p-group and H is
the Sylow p-subgroup of B. Also it is easy to see that the maximal sub-bigroups of G are carried
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by AB,, NB where B, is maximal in B. We show that G/ocG esvar {NB}. If ¢ is a bilaw in NB
we may assume it to be uniform, involving y,, zy, ..., z;_; (¢ > 1). If x: Q,~ G, define B:Q,~>NB
by

1B = (112)?, 2z, =z, 1€l
and y: Qy,—> NB by

ny =[yu2l, zy=za, icl

where r = exp B[H. It is easily seen that (qa)? = ¢f = 1, [¢,zf]a = ¢y = 1. Thus ¢(G) liesin
the socle of AH, that s, in ¢G. Hence ¢ is a law in G/oG. Since all proper quotient bigroups of G
are quotient bigroups of G/oG it follows from the hypotheses that G is critical.

THEOREM. If P in Ao W is nilpotent and critical, with A,( P) non-trivial, then there exists to each natural
number t which is prime to the order of P, a unique non-nilpotent critical bigroup G in Ao A with |K| =t
and F* ~ P,

If (@, ff,ﬁ[ X 1?) in Wo A is critical-like, with Al a p-group and A non-trivial and self-centralizing,
then there exist critical bigroups G, ..., G,, such that each F} is critical, each |K,| = [I% |, and
svar{Gy, ..., G,} = svar {G}. (3.4.7)

Proof. From (3.1.6), A;(P) is monogenic gua P operator group; also P is monolithic. Choose
the natural number s so that ¢ divides p*— 1 but not p* —1if u < s. Let Py, ..., P, be isomorphic
copies of P, say A;: P;— P; is an isomorphism. If a; in 4,(P;) is such that

(ay®Po = 4,(Py),

we may suppose a; = a4 A;, 1 = {1,...,5}
In the direct product P;x...x P, write 4 = 4,(P;x...x P,), and H for the diagonal of
45(Pyx ...x Py); that is
H = {f:f(i) =f(1) ;e 4,(P))}.

and set F = (AH, A, H). We aim to extend F by a ¢-cycle so that the resulting bigroup is critical.
Put 4y = {ay, ..., a,) and let K = (k:k* = 1) be a cycle of order ¢. According to Cossey (1966,
theorem 4.2.2) there exists a unique critical group 4, K; in this group let £ induce an automorphism
o on A,. Define the action of @ on H to be the identity mapping of H. Then a extends to an
automorphism of F. For, let
r=7(ay,...,050, .. k) =1

be a relation among the generating set {a;, ..., a,} U H of F. Clearly r = 1 is equivalent to a set of
relations
rp=ranhy, G hy) =1, ief{l, ..., sh

Because of the way we have constructed F, r; = 1isarelationin Fifand only ifr(a;, hy, ..., b,) = 1
is a relation in F, i,je{1, ..., s}. If ay = TI{_, a%i is any element of 4,, then

I

7y (a(); ceey hu) = 7 (aé”j, hls ceesy hu)

7

1@, hyy ooy )P = 1.

Il
=

J

By von Dyck’s theorem, o may be extended to an endomorphism of F. Since Ay« = 4,, Fa = F,
and consequently « is an automorphism of F.
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Next we verify that (FK, 4, HK) is critical. As a first step we show that K acts fixed point free
on 4. If N = A?[A,H], N; = 4,(P;)?[4,(P;), A,(P;)] then N; = Nn 4,(P;) and

N=Nyx..xN,

so that A/N = ANy x ... x A/ N; ~ A,/ Af where the isomorphisms are K-isomorphisms. Hence
K acts faithfully and irreducibly on A/N. Now there exist elements Ay, ..., 4, of H and a non-
negative integer y such that

1 :’: xi = [ai’hl, ---:hu]pyeo-Pi: ie{l’ ...,.Y};

and the mapping a; N - x; extends to a K-homomorphism y of A/N into oF, the socle of F. In
fact 4 is a K-isomorphism since K acts faithfully and irreducibly on A/N and since clearly
Xy ..oy %gy = oF. It follows that K acts faithfully and irreducibly on oF, and therefore fixed
point free on 4. Finally a calculation similar to that in the proof of (3.3.1) shows that the maximal
sub-bigroups of FK are precisely those carried by AH K, AHK,, NHK where H,, K, are maximal
in H, Krespectively; and, as in the proofof (3.1.6), svar (4H,, 4, H,) = svar (4,(P,) Hy, A,(P),H,)
and also svar (NH, N, H) = svar (N, H, Ny, H). By hypothesis therefore, there ‘exists a biword ¢
which is a bilaw in the bigroups carried by AH,, NH, but not in that carried by AH. If ¢ involves
the variables z,, z,, ..., z, from {z;, z,, ..., } and ¢, ..., {, are the maximal divisors of ¢, not equal to
1 (if any), consider the biword
(]” = [ql3 2514-1, tee fo—kv]>

where ¢’ is obtained from ¢ by replacing each z; by z& Then ¢” is a bilaw in all maximal sub-
bigroups of FK but not in FK itself. Since FK is monolithic, (3.4.6) concludes the existence part
of the proof.

In order to prove the uniqueness of G, suppose that G, is non-nilpotent and critical with
F{ =~ F* and K; ~ K. Let q; belong to 4,(F;) — N,. Then 4,K = {ay, K) and 4o K = {a;, K,) are
critical groups, and the result of Cossey (1966) mentioned earlier ensures that there exists an
isomorphism a : 4y K-> A4, K; which takes 4, to 4; and K to K;. It is easy to verify (for example as
in (3.4.1)) that a|4, extends to a morphism of F onto F, which commutes with the action of K,
and is one-to-one when restricted to F*, Hence there exists a morphism of G onto G, the kernel
of which, if not trivial, must contain oG, and therefore o F*, a contradiction. Therefore G and G,
are isomorphic. . R A

To prove the second assertion let G be as stated. Now F = (AH, 4, H) is contained in the
bivariety irredundantly generated by some of its critical factors FY, ..., F)5 say. We may suppose
A(F¥) are all non-trivial. For, if 4,(F{), say, were 1, then exp 4,(F}) > exp Ay(FY),
i€{2,...,w} (or else Fif would be redundantl, and therll\ F, ..., F¥ and therefore F would have
a bilaw [y,, z*] where 2z}” is not a bilaw in F. But 4, (F) is non-trivial and self-centralizing in F
and therefore we would have a contradiction. According to the first part of the theorem, we may
construct critical bigroups Gy, ..., G, from Ff, ..., F} respectively, and the same cycle iso-
morphic to K. Then svar G = svar {Gy,..., G,}. For, if q is a commutator biword, and ¢,, ..., ¢,
correspond to ¢, ¢ by lemma 3.4.4, then ¢ is a bilaw in G if and only if ¢, ..., ¢, are bilaws in FA',
hence if and only if ¢,, ..., ¢, are bilaws in Fy, ..., F¥, and therefore if and only if ¢ is a bilaw in
G, ..., G,; and biwords yj, zi are bilaws in é if and only if they are bilaws in G, ..., G, by
an easy argument which we omit.
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CHAPTER 4. JOIN-IRREDUCIBLES IN A(U, o A,)

It was mentioned in the introduction that a classification of the join irreducibles in 4 (%o A)
is one of the aims of this paper. To this end we restrict our attention in this chapter to the finite
exponent bivarieties. As a by-product of the proofs here we get that the lattice A(%,,0%,) has
minimum condition, and certain reduction theorems relating to questions of distributivity.
However, the main results are theorem 4.1.16, where we determine all join-irreducibles in
A(A,,0A,) in terms of join-irreducibles of prime-power exponent, and theorem 4.2.30, where
we deal with the non-nilpotent ones of prime-power exponent. The only cases in which a complete
classification of all subvarieties of a given bivariety is obtainable is for %, 0 %,, when m is nearly
prime to z (this is done in § 4.3), and for subvarieties of 2,0 %, in which the class of nilpotent
bigroups is suitably restricted (§ 4.4).

4.1. Subvarieties of W,,0 N,,: reduction to the case of prime-power exponent
We begin with a few remarks of a general character.
DeriniTION. If B is a bivariety, define
Bp = svar{GeH: G critical, 4,(G) =* 1},
BY ={Ge#:4,(G) = 1}.

Also define
D(HB) ={€p:€ < %}, ‘
() = (¢4 ) | L)
V(#) ={Cy:% < &)
DEFINITION. Denote the lattice of sub-split-varieties of a split-variety & by A(SF). (4.1.2)

LemMmA. Each of ©(%B), ¥ (B), equipped with the inclusion order inherited from A(%), is a complete
lattice. The mappings ¢ : A(B) > DP(B), y: A(B) >V (H) are onto lattice-homomorphisms.  (4.1.3)
Proof. Now ¥(4) is clearly a sublattice of 4, in fact equal to A(#A EoL) (where D is the
variety of all groups). In @(%), the join of any subset is equal to its join in A(%), and the meet
of any subset is the largest element of @(#) contained in all elements of the subset: indeed if
€ < % (iel), then .
N ¢riely = (N%:iel}) 6.

(An instance of €, A €, # %, A%, occurs in the lattice A(U,0A, A N3) in §4.4 with
€ = W0 AL ARy, €, = 3.)

That 3 is a homomorphism follows since the bilaws defining €y for any € are precisely
Cn 4,(Q,) = Coy (by (1.2.8)), and o, is a lattice homomorphism. To show that ¢ is a homo-
morphism we need the following lemma.

LemMmA. If G is critical with A,(G) non-trivial, and if
Gesvar{G;:jeJ}vEoD
where, for each j, A,(G;) is non-trivial, then
Gesvar{G;:jeJ}. © o (4.1.4)
Proof. If ¢ is a bilaw in all G; we may assume by virtue of (2.2.1) that either ¢ is in 4,(Q,) or
q is in 4,(Q,). Write ¢' = ¢ in the first case, and ¢’ = [y, ¢] in the second; then ¢’ is a bilaw in

39 Vol. 266. A,
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all G; and in €0 D, whence in G. Since 4;(G) is non-trivial, and the centralizer of 4,(G) in
4,(G) is trivial, we deduce that ¢ is a bilaw in G. This completes the proof.

Returning to the proof of (4.1.3) we note that, if G in € v 2 is critical, and 4,(G) is not 1,
then by (4.1.4), G belongs to ¥¢ v Z¢, whence ‘

(EVvD)p<CHV Do,

As the converse inclusion is obvious this shows that ¢ is a join-homomorphism. By definition,
¢ is a meet homomorphism, so (4.1.3) is proved.

THEOREM. If A is a bivariety in which every sub-bivariety is generated by finite bigroups, then A ()
is a sub-direct product of D (%) and ¥ (%). (4.1.5)
Proof. In this case, if € < 4, then
C=%pVvEY;
and therefore €¥¢ = D¢, €Y = Dy implies € = 2, whence the result.

CoROLLARY. If % is a bivariety every sub-bivariety of which is generated by finite bigroups, then A (%)
is distributive if and only if D(B), Y (B) are distributive. (4.1.6)
The following notation will be used throughout this section.

NotATION. Let m, n be natural numbers greater than 1. Write V" = U,,0W,,, and to each prime p
dividing m write ¥y, = a0 Wy, U, = WpuoWyp where p*, pf are the maximum powers of p dividing
m, n respectively ; also put n = phn,,. ; (4.1.7)

THEOREM. Let &L be a subvariety of ¥~ containing o W,,. To each p dividing m and each t dividing n,,
there exists a unique subvariety <, of & such that
) Fued(®,), Le®@,) (plm 1+ n,);
(ii) tlu|n, implies &, < Ss;
(iii) & = V{L(Co A ) A Ao A: p|m, tn,}. (4.1.8)
Before proving this result we need a lemma similar to (4.1.4), and, if the bigroups involved
are thought of as groups, identical with a special case of result of Kovacs & Newman (1966,

(1.12)).

LemMa. Let {G;:iel}, {H;:jeJ} be critical bigroups in N, 0N, (m,n > 0), where each G, is non-
nilpotent, and each H; is nilpotent. If G is critical and not nilpotent and

Gesvar{G;, H;:iel, jeJ},
then Gesvar{G;:iel, |K|||K,],expcG = expoG} (4.1.9)

(en the notation of (3.2.1)).

Proof. Suppose first that ¢ is a bilaw in all G, H; such thatp = exp oG, = expoH; = expoG.
As usual we may suppose that either ¢ is in 4,(Q,) or in 4,(Q,); write ¢’ for ¢ in the first case and
for [y, ¢] in the latter. If m = pvm’ (where p{m'), then ¢'™ is a bilaw in all G;, H; and therefore
in G. Since p does not divide m’, ¢’ is a bilaw in G, and therefore ¢ is a bilaw in G, 4,(G) being
self-centralizing.

Without loss of generality, then, we may suppose that exp 0G; = exp o H; = p for all 7, j. Then
let ¢ be a bilaw in all G such that |K|| |K;|: again we may assume ¢ is in 4,(Q,) or in 4,(Q,)
and define ¢’ as in the last paragraph. If {ny,...,n,} = {|K;|: i€, |K|{|K,|} then

B 8,
’ 7
[q > ZZ' m, ceey z;’_}_?tu]
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is a bilaw in all G;, H,, where p# is the largest power of p dividing z and r is chosen large enough
to avoid z’s which occur in ¢. However, since K acts fixed point free on 4,(G), ¢’ is a bilaw in G
and, as before, ¢ is a bilaw in G.

Proof of (4.1.8). Suppose that & is a subvariety of ¥", and make the following definition for
each p dividing m and each ¢ dividing 7,):

<

7y = svar {F*: Ge¥ is critical, |K| = ¢, expoG = p},
where we 1nterpret F*=G,K=1in case Gisa p-group. IfGi in & is critical with |K| = u, and
t divides u, write G for the sub- bigroup (FK 4, HK ) of G where Kis the subgroup of K of order ¢.

By (3.4.7) there exist critical bigroups Gy, ..., G, with
|Ky| = ... = |Ky| =¢, svar{Gy,..., G} = svar (A;,
and svar {Fy, ..., Fii} = svar F'*,
It follows that &, < .
By virtue of (2.2.5), (iii) will be proved if we can show that for non-trivial ¢ dividing 7,

svar{Ge¥ : G critical, |K| =, exp oG = p} = %, (EoAy) A Ao A. (4.1.10)

That the left-hand side is contained in the right-hand side is obvious, and for the opposite
inclusion suppose that Gin &, (€0 Ae) A Ao A is critical; if it is not nilpotent, then F is in It
| K| divides ¢, and (3.4.4) then ensures that G belongs to the left-hand side of (4.1.10); and if
G is nilpotent we draw the same conclusion immediately, completing the proof of existence in
(4.1.8).

Suppose that F;(¢|n,) are subvarieties of & satisfying the conditions (i) to (iii) in (4.1.8).
First, it is easy to see that .

p1 =

SNy = T

and secondly, suppose ¢ is not 1 so that, by virtue of (3.4.7) and the definition of #,;, #,,; contains

S for all p dividing m. Conversely suppose that G in & is critical with |K| = tand exp o0 G = p;
then (3.4.7) and (4.1.9) show that

GeV{Zpu(EoAy) AWo A:t|u},

from which it follows that F*isin %,;. Since <, is generated by all such F* it must be contained
in ; this completes the proof of uniqueness in (4.1.8).

CoroLLARY. Let A, be the set of positive divisors of n,, with the division ordering. Then if |A,| = s,
A(V,) is a subdirect product of A, A(%,) and s, — 1 copies of D(%,). (4.1.11)
Proof. Let A, = A(%,) x ®(%,)*»~* be the set of all functions f defined on 4,, such that

S ed(u,), f(t)eD X, (1*t|n,)

(the order on A4, being component-wise), and let 4, be the sublattice of A,,:
= {fed,t|u|n, implies f(u) < f(t)}.
Clearly 4, is subdirect.
Define the mapping A, : A(¥}) >4, x A, by
y’\p = (lo /o)

where FNCoNU, = Coy,
S it 12

d ) =1 7 0

an Jol®) {@o@ if ]t

39-2
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That f, is in A, follows from (4.1.8) (i) to (ii); and from (iii) we conclude that A,, is one-to-one
and onto. Since A,, is also inclusion preserving it follows that it is a lattice isomorphism.
Notice, that if for ¢ in {0} U 4,,, we define A,,; by

Sl =fol), L <V 0%t FAy=1, (4.1.12)

where FA, = (4, f;), then A, are homomorphisms and yield the sub-direct decomposition of
A(¥,) described above.

THEOREM. Define p,: A(V") > A(V) by B, = BNV, for all p dividing m. Then p, are all
homomorphisms and they provide a subdirect decomposition of A(¥"). (4.1.13)
Proof. That each p, is a meet-homomorphism is obvious. To show that it is a join-homo-

morphism we must show that, for subvarieties %, € of ¥~
(BN EC) 1y < BN €yt

since the converse is clear. If G in (# v %) A ¥}, is critical, and 4,(G) is not 1, then (4.1.9) yields
that G belongs to (Z AY,) v (¢ AY,) which is what we want; if 4,(G) = 1 then

Ge(BVE)NCoN, = (BVE) Y = BYNCY < B,V Cy,
using (4.1.3). Finally note that for Z < ¥,

B =\ {Bu,: p\m}, (4.1.14)
and therefore the theorem is proved. '

THEOREM. If % is a subvariety of A, 0N, then A(HB) is distributive if and only if A(B)pyAp; is
distributive for each p dividing m and each t dividing n,. (4.1.15)
Proof. Use (4.1.13), (4.1.11) and (4.1.6).

THEOREM. The join-irreducible subvarieties of N,,0 N, are precisely those of €o N, those of U,(p|m)

and those of the type
FL(EoU) AU,
where &, a non-trivial element of D(U,), is join-irreducible, and t( > 1) divides n,,. (4.1.16)

Proof. Use (4.1.14) and (4.1.8). It is clear at once that a join-irreducible % must have this
general form; and it is easy to see from the embedding in (4.1.11) that & (€o ;) A Ao A is
join-irreducible if and only if % is join-irreducible.

We shall prove in (4.2.29) that A(%,0%,) has minimum condition. Standard lattice theory
then yields that every subvariety of %,,0%, is a finite irredundant join of join-irreducibles, so
(4.1.16) and (4.2.33) enable us to describe the non-nilpotent join-irreducibles in this way (in
terms of the nilpotent ones), though with possible lack of uniqueness for such descriptions. In
a modular lattice (as here) each element has a unique decomposition as an irredundant join of
join-irreducibles if and only if the lattice is distributive. From this point of view (4.1.15) is a
useful reduction theorem. ’

In one case at least we are able to determine precisely the nature of irredundant join decom-
positions, as the next theorem shows.

TaEOREM. The decomposition
¥V =V{,: plm}

is the one and only way that ¥~ can be written as an irredundant join of join-irreducibles. (4.1.17)
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Proof. We show in (4.2.30) that the %, are join-irreducible. Suppose that for some p dividing m

Vp=L VS
From (4.1.8) we have that
Uy = LAy, VLA
so that %, = #A,,,, , say, and so for all ¢ dividing n,,, FA,; = Uy; and (4.1.8) then gives & = ¥/,.
Certainly then, ¥~ has a decomposition as an irredundant join of join-irreducibles. Suppose
that

Pnp PNp?

V' =%V ... VL,
is another such decomposition. Then, for p dividing m,

Vo =ByppV ... N By,

whence, for some jin {1, ..., s},
Vo =Biky < B

That is, each ¥, is contained in some %,; and each %; does contain some ¥, since otherwise it
is redundant. Also since each %; is join-irreducible we have from (4.1.14) that #; = #;u, for
some ¢ dividing m. Hence

Vp < By =Bipg <Yy
It must follow that p = ¢ and %; = ¥,; this completes the proof.

Finally, the results proved so far in this section enable us to obtain a reduction theorem for

minimum condition in A(,,0A,).

THEOREM. A(N,,0N,) has descending chain condition if and only if each A(%,) (p|m) has
descending chain condition. (4.1.18)

Proof. Since U, oA, = V{¥,:p|m}, (2.1.3) shows that A(A,o0NA,) has descending chain
condition if and only if each A(¥},) does. Now let

Vo=Bo>B,>...2%; > ...

J
be a descending chain in 4(¥7,). Then in the notation of (4.1.7) and (4.1.8), for each ¢ dividing
n, we have that
(Bo)pt = (B1)pt = o = (Bj)pt = ...
is a descending chain. If cach of these chains terminate, then for some natural number j,,

J=Jjo implies (%), = (%;)p forall tn

-
Hence (4.1.8) gives that
J = Jjo implies #; = %;.

As the converse is obvious, this completes the proof of (4.1.18).

4.2, A(N,,0N,p): preliminary lemmas

Preparatory to our attack on A(,«0 %A, ;) we introduce some necessary notation, and prove
several technical lemmas. We shall for the most part be working with split-free bigroups and
their normal fully invariant sub-bigroups rather than with bivarieties as such. As a matter of
minor convenience we choose to work with o, (p prime), rather than with %, 0%, For
lattice purposes it suffices to work in the split-free bigroup of A o ,,» of rank (1, ), as the following
result shows.
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LemMA. The lattices of normal, fully invariant sub-bigroups of Fo, (oA ,) and Fy, ) (W0 A,) are
isomorphic. (4.2.1)
Proof. We use (1.5.10), imagining Q(1,00) embedded in Q, in a natural way. Consider the
mapping £ from the lattice of normal, fully invariant sub-bigroups of Q, containing the bilaws
Ao Ay (Q,) of o A, to the lattice of normal, fully invariant sub-bigroups of Q(1, ) containing
Ao W, (Q(1,00)), defined by
8¢ = 5(Q(1, 0)).

Now £ is onto by (1.4.13), clearly preserves inclusions, and by (1.5.10) is a meet-homo-
morphism; it is easy to see that £ is then a join-homomorphism if it is one-to-one. If &}, &, are
distinct subvarieties of %o 2 , then there exists ¢ in (Q(1,0) n §y) — Sy, say, by virtue of (2.2.3)
and so, from (1.5.10), $;(Q(1,00)) and S,(Q(1,00)) are different. This completes the proof.

NotatioN., Write W, for Fq, (N0 W,w), A = A;(W,), B = Ay(W,). For the split-free generating
set of W, write {y,} U {2y, Zgy ..., 24, ... }; 10 confusion will result from this. We will abuse language to the
extent of calling elements of W, biwords. (4.2.2)

From theorem 1.7.12 we have that

W, = Cwr Fo (U,»),
where C is an infinite cycle, and where 4 is the base group of W, and B = F (% ,). We shall
prove, inter alia,

TureorEM. All ascending chains of normal, fully invariant sub-bigroups of W, break off. (4.2.3)
The results obtained in proving this will enable us to get at the join-irreducible sub-bivarieties
of U 2.0 %[pﬁ.

It is worth noting here

Lemma. Every fully invariant sub-bigroup of W, contained in A is normal in W,. (4.2.4)
Proof. This follows since elements of B induce self-morphisms of W,, and 4 is abelian.

LemmA. If U is a normal sub-bigroup of W,, and if for fixed elements a,, ..., a,, in A, and all b in B
Tl [a,, 6] € U
i=1
then for all by, ..., by, in B, 1™ [a;, b3, ..., b "*+Y] belongs to U, uefl, ..., m}. (4.2.5)

Proof. For u = 1 the assertion is the hypothesis. Suppose, therefore, that for some
ue{l,...,m—1} the lemma is true. If by, ..., b, , are arbitrarily chosen elements of B, then

m
TI[a, b4, .05 (b buga)’ 4] € UL
I=u
m
) . y , o . . . i
Tha’t IS, H [aj) &i’ LX) b'li u+l] [ajs i) seey b?u—?i_l—z’ b;-ﬁﬂ] [aj) i) ceed b‘li u+l> bgt-l—qlﬁ_ ] € U
j=u .
and from here, using our inductive hypothesis, we obtain that

[a;, b0, ..., 657 b3 e UL (4.2.6)

=z

Il

i=u

Since U is normal we have TI7-,[a;, b, ..., 67", b, ;] € U and so

m
j j—u+1 — J j—u+1 pj—ut+l

H [aja bia,bﬂ “ )bu+l] l[aj)bb---’ bZl * 3bu+l ]EU'

I=u
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Finally, using the commutator identity [x, ]~ [x, %] = [, y*~*]" for all integers ¢, we have
m X )
H [ajs b:]l, ooy b{;[_'ﬂbu+1 = U’
j=u+1

which, since U is normal, gives what we want.

This lemma will prove useful in a number of places: first as the initial step of an induction in
the proof of lemma 4.2.10 below, and later in dealing with the structure of certain metabelian
varieties.

Norartion, If U is normal in W, define the sub-bigroups U, of W, for non-negative integers i by
UilU = Z,(W,|U),
where Z,(W,|U) is the i-th term of the upper central series of W,| U (see, for example, p. 77 in Hanna Neumann

1967).
Note that if ¢ is in 4, then [a, b, ..., ,] belongs to U for all by, ..., b,in Bif and only if aisin U,.

Lemwma. If to the hypotheses of (4.2.5) we add m < p—1, then for ie{1,...,m}, a;€U,,. (4.2.7)

Proof. From (4.2.5),
[arm biﬂ, veey b?n—l, bm] eU

for all by, ...,4,, in B. Since 1,2, ...,m are all prime to p, we have a,, € U,,.

Assume that it has been proved that a,,,€U,,...,a,, €U, for some i > 1. Then since
07 [a;, b5, ..., 65" e U, we have by commuting with b4, ..., ,, that [a;, 63, ..., b, 0515, b €17
and hence, as before, a, € U,,. This completes the proof.

LemmA. If U is normal in W, and if for fixed elements as, ..., a,, of A and all b in B,

then for all b in B,
(1) ([ae 07][2p1p; 0%7] ...) €Uy p < S
(1) ([ay 8] [@yips 0P] ...) EUppypgy 1 <u<p—1;
(i) (@y@pip...) EUpips 1<v<p—1L (4.2.8)
In the proof of this lemma we need the following notation, and lemma 4.2.10 below.
NotaTiON. If by, ..., b, are arbitrary elements of B, write
(S, Uy 0,8) = [@gyipy BITT, ..., BYLYTIPHY puAs— R0 1 08B
where se{l,...,m}, 1€{0, ..., [} where I, = [(m —s)[p], ve{l, ..., p} and where u has the range:
well,.sipy it pls,
ue{l,..,[sip)+1} if pfs,

with the conventions:
s—up+v < 0 implies

. y—1 i+1 .
C(S, U, v, Z) = [as—l—ip} bg‘jf’ﬁ—l))%+l> cees bélj_p}l—pl] s
S—up+v <s<s—(u=1)p+1implies
. X — 8 T
c(8, U, 0,1) = [@gygp, BITP, ..., BED T IR HT],

Ls
Also write p(s,u,v) = Tl e(s,u,v,7). (4.2.9)

=0
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LemMa. If p is as in (4.2.8) then
ps,u,0) €L,
Sor all relevant s,u, v, wherer = m—s+u(p—1) —v+1. (4.2.10)

Proof. From (4.2.5) we have
P(m, I,P) = [am3 in’ .. m 1 m] € U

and in this expression we may replace 67~ by bi whenever p does not divide m — 7+ 1. Hence,
since
p(my 1, 0) = [@y, By ..y Do B =0 ) p 41y ey D]
for all relevant u, v,
p(m,u,v) €U,
where r =m—(m—up+v+u—1) = u(p—1) —v+ 1. We use this as the start of an induction, the
induction being taken over the lex1cographlcally ordered set of triples (—s,u, —v). Suppose,
therefore, thatforall (—s,u, —v) < (—t,w, —x+ 1) wherex {2, ..., p}, the assertion of the lemma
is true.
First note that from lemma 4.2.5 we have

m ) R t+p—-1 .
! [aj, b1, ..., 057" ] = ]I:[t p(Js L t+p—7)
eU.

Hence, by the inductive hypothesis we deduce from this that

. p(t’ 1310) EUvm~t
as required. Secondly,

]
pltyw, x) = T c(t, w,x,0)
i=0

—x+7 1 +2—1 (241
and (t w, X, Z) = [at-l—zpab b:&”pw1?+wzp+ béw (1}7 I;£+19 b a )pl]

a;+w+2 (w4i—1)p (t+1)p  pwp—x+ip+1
= [at+7lp3 bl bt wp+x— b —(w— 1)10+1s b ~]72|-1> t—wp+x ]

= [6(t> W, X — 13 Z); t pwlg;-l—*—-alc
x [‘lt-!—i;m biﬂp’ b%valﬁ-;p+2 bgw-(% 11;:0+1> .. b( +1})-€ls b wp+ac]b1‘”pw;ﬂix
Therefore N
w: T+1
Pty w,x) = [p(t, w3~ 1), B2 tE] ' (1 py w4 1, x — )BT,
where p’(t+p,w+1,x—1) differs from p(¢+p,w+1,x—1) only in that the element by, ),y

occurs as b;_,,,.,; in any event p’(t+p,w+1,x — l)bw” wp+z belongs to U, where

r=me(4p)+ (1) (p=1) = (= 1)+ 1 = m—t+w(p—1) —x+1,
by the induction hypothesis. Hence, since also p(¢, w, x) is in U, by the inductive hypothesis,
[p(t,w, 2= 1), b¢2 53] € U

and the fact that wp—x + 1 is prime to p under the assumption on x, and that b,_,,, ., does not

occur in p(f, w, ¥ — 1), means that
. p(tyw,x_'l)ezjr+1,
as required.

Finally, note that for u > 2,
p(s,u, p) = p(s,u—1,1)

and this completes the induction, and the proof of (4.2.10).
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Proof of (4.2.8). Puts = p, u = 1, v = 1 in (4.2.10) and we get

Iy
1
U [a(ul)mb( i )p]e m—1s

Ifp<s<2p—1,putu=2,0=2p—sand we get

ls
(Z-+1)p
l_[() [as+ip> bs p)l l] € Um—b
i=

and these together are just the assertion (i).
To prove (iii) proceed as follows. We have

2p—1 i

p= H [au bz] H H [a] -+ leps b;+k1)]

- 7] . ] .
= i[:ll[ai, b jg {/cl;lo[aj ks DETVP]Y 'rl kl;loaﬁkp’ bz—p“.
By part (i), then,

2p—1

H [au bl] II I: H a]+lcp3 b JEUm—-la

-1 !
and therefore p]] [ f[ Qi geps b ] eU,_;.

i=1

Lemma 4.2.7 yields, for all ie{1,...,p -1},

U
Il a;0p€ Um+p 2
=0

and this completes the proof of (iii).
The proof of (ii) uses (i), (iii) and the identity

ly by ty _—
H [av+kps bv+k1)] = [ H av+/cp> bv] H [a‘v+lcps bkab (4-2-11)
k=0 =0 k=1
for ve{l,...,p—1}. The proof of (4.2.8) is now complete.
DEFINITION. An element of W, which belongs to the subgroup generated by the set

{yl} U {Z{)a Zg, LEEP) Z%), ...}
will be called a t-biword. (4.2.12)

LeMMA. If g€ A, then there exist T-biwords q,, ..., qq and a natural number v such that

(1) g€ <{qls e qd}>Wy>
(i) [9:vB] <elgt (1 <i<d).
Moreover, if q is uniform, so are qy, ..., qq. (As usual, [q;,vB] stands for the subgroup generated by the

commutators [G;, byy ...y 0], by ..., by€ B.) (4.2.13)
The proof of this lemma depends on the following consideration.

LemMmA. If ¢* € A is a uniform biword, say involving the variables y,, z,, ..., z, precisely, then there exist
uniform biwords gf, ..., q¥ in which z, if it occurs at all, does so raised to a power which is a multiple of p,
and q¥, ..., qF involve no variables other than y,, z,, ..., z;; and there exists a natural number v* such that

i) g*edqf, .. ,qr}>W”

(11) [(I:, U*B] < Cl{q*} (_] <1< 1’).} (4.2.].4)

40 Vol. 266. A,
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Proof. We may write
it
L — .l:[l[yl, Z%il, .,,,Zéis]oci,
where 0 < A;; < 7 —1for all i, j. For je{l,...,$" — 1} define
H Ly, 287, .. Ml‘]“l 3,7 = Ay
a; = ,, .
1 1, otherwise.

Then ¢* = I122,'[a;, ZI]. |Since by construction the a;’s do not involve z,, the hypotheses of
lemma 4.2.8 are satisfied, with U = ¢/{g*}. Hence, ifu’ = [(¢* —1—u)[p] and v" = [(p" — 1 —v)[p],

w
=kl:’[0[ u+kp7z(k+1)p] GU v—2 (P SUs 217—1)7

o
* = I].__[Oa’l}—ka €Uprip-s (1< 1)
Jo =
By virtue of the fact that

n v
=11 TI[@psaps 2871,
v=1k=0
and from (4.2.11), we have
g*e <{q** 1<i<2p-1H"

Put {¢F,...,¢f} = {gF* 1 qF* + 1,1 <0 < 2p—1}, v* = "+ p— 3, and we are finished.

Proof of (4.2.13). We can, by virtue of (1.4.5), assume ¢ to be uniform. Then apply (4.2.14) to
q, say ¢ involves precisely y,, 2, ..., 25, and obtain ¢f, ..., ¢ in which z, occurs either not at all, or
to a power which is a multiple of p. Then use (4.2.14) on g¢F, ..., ¢r, first moving z, ; up to the
back of each commutator, and making z,_, ‘good’ according to (4.2.14). Continue this process
until we have dealt with z, ..., z, in turn, and hence reached a set of {-biwords ¢, ...,¢; and a
natural number v (the sum of all the relevant v*’s) which satisfy the assertions of the lemma.

LemMaA. Suppose that U is a biverbal sub-bigroup of W, determined by 1-biwords. Then U = U, for
all i in I, (4.2.15)
Proof. We may suppose that the {-biwords determining U are

12
Ao Nore T opss .
q9; = Hl[yb Z%) ul, ---7Zspi mi]a”’ ZEL

where A;;;, > 0. Clearly it suffices to show that if ¢’ = [¢, z;] isin U (where ginvolvesy,, zy, ..., 244
at most) then ¢ isin U.
There are values of the biwords ¢;, v4, ..., vy say, such that

q, = V10y...UpN. (4.2.16)

Each v is obtained from some ¢, by substituting for , an element of 4, and for z, ..., z;, elements
of B. By applying to (4.2.16) the deletion &,, if necessary, we may suppose that each v; involves z;.
These z;’s entered v; by substitution in some g, either for y, or for some z;; in the latter case the
relevant z,’s will occur raised to a power which is a multiple of p. Consider the self-morphism x
of W, defined by
Y1k =Y, Zi = 24 .] + d7 Zal = cholv—l

Then, under u, (4.2.16) becomes

(¢'m) (i p) ... (7, m) = 1, (4.2.17)
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where v;, involves z; only by virtue of the substitution for y, in the relevant ¢;. Indeed, since the
commutators involved in the expressions for ¢; are linear in the first entry, we may suppose, by
renaming if necessary, that v;, is obtained from some ¢; by a substitution for y; of a power of a
single commutator of the form
[ Zfl}’ cens Zsz, Zfl]:

where d,, ..., d,, d are distinct, and where ¢ is not divisible by p, and some unspecified substitution
for zy, ..., z; (though it does not involve z;). That is, there exist values vy, ..., v of the ¢, which
do not involve z; at all, such that o

(¢'m) [v1, 2527 ... [vg, 24877 71] = 1, (4.2.18)
with1 < § < ... <8g <p—1,say.
Lemma 4.2.7, or at any rate the same proof exactly, can now be used to conclude that
[qg[[lvé, 227N L2 ] = L (4.2.19)
By a result of Baumslag (1959) (24.22 in Hanna Neumann 1967),
711 1);; =1,
gi=1
and in consequence, ¢ belongs to U.
Write 4, for the lattice of normal, fully invariant sub-bigroups of W,. We aim to show that the
t-biwords provide an embedding of 4,_; into 4,.
Suppose, therefore, that W,_, is free on {§;} U {£;, 2, ...}, that 4 = 4,(W,_,), B = 4,(W,_,)
and that the morphism &,: W,_; - W, is defined by
.@lgv:yla 2j€v22f7 j€I+’
The morphism £, induces a mapping A, : 4,_; - 4, in the following natural way: if Le 4,_,, that
is, if L is normal and fully invariant in W,_,, then ’
LA, = c¢l{lg,: leL}. (4.2.20)
It is clear at once that A, is a join-homomorphism, but not so clear that it is a meet-homo-

morphism. In fact we prove

LemMa. The mapping A,: A,_y— A, is a one-to-one lattice homomorphism. : (4.2.21)
Proof. First note that A, preserves inclusion. We are left to show that A, is a meet-homomorphism
and that it is one-to-one. To prove the former it suffices to prove that for L, Lye A4, 4,

LA, Ly, < (Lin Ly A, (4.2.22)
since the opposite inclusion is obvious. We need several lemmas to do this.

Lemma. If Le A,_y, then LA, = (L§,)7>. (4.2.23)
Proof. Let ov: W,— W,, then if f: B — B is defined by
Zjﬂ = 2]': j€I+,
define &: W,_,— W,_, by . .
he =1, 28=(za)p.
Also define «, : W,—~ W, by
Yo =&, zog =2z;, JEI

Then if leL, (I£)a = (18)§,0,€ (LE,) oy < (LE,)”» as required. This last inclusion is seen

from the fact that every normal subgroup of W, admits «,.
40-2
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Lemma. If Le A,_,, then (writing LA, for the carrier of LA,)
' IANnA = (Lnd)A, LxnB=(LnB)E,. (4.2.24)
Proof. Put Ln 4 = A,, Ln B = B,. Then

Bo/lv = [Aa Bo gv] (Bo gv)
and [4, By] A, carries cl{[d,bs] £,: de A, bye By} which is equal to c{[yy, by&,]: b€ By} and this
in turn is carried by [4, B,£,], a subgroup of 4,A,. Hence
, LA, = (442,) (ByA,) = (4yA,) (Bo,),
so that IanA =A,A, = (LnA)A, LA,nB=B,t = (LnB)E,.

From this lemma, and from the definition of §,, we have that
(LA, 0 LyA,) 0 B = (LA, 0 B) n (LyA, 0 B)

= LinB)§,n (Lyn B)E, = (Lin Lyn B) g,

= (LinLy)A,nB.
Hence in order to prove (4.2.22) it suffices to show that L;A,nL,A,n 4 is contained in

(Lyn Ly) A, n 4, or that i - ~
(LinA)A,n (Lyn A)A, < (Lyn Lyn A) A, (4.2.25)

If ¢ belongs to the left-hand side of (4.2.25) then, by virtue of (4.2.13), there exist T-biwords

1, ..-» 4, and an integer v such that
[¢5vB] < (Lin A)A,n (Lyn )2, ie{l,...,d}.

However the sub-bigroups carried by (L;n 4)A,, (L,n 4) A, are determined by f-biwords and
therefore lemma 4.2.15 ensures that for each i, ¢; belongs to (L, n A)A,n (Lyn A) A,. The other
piece of information from (4.2.13) is that ¢ is in ¢/{¢,, ..., ¢4} hence the sub-bigroup carried by
(Lyn A) A, n (LynA) A, is determined by T-biwords.
- Inorder to finish off the proof of (4.2.22) we need the following lemma. The proof given is due
to L. G. Kovdcs, and replaces my original, much longer, proof.

Lemva. IfLeA,_y, L < 4, and if ge LA, is a t-biword, then g€ LE,. (4.2.26)

Proof. By (4.2.23), ge (L£,)"» and hence there exist /; in L and b, in B such that

¢
7= .1;[1 (Z’L gv)bi'
Write 7" for a fixed transversal of B? in B (with 1€ T'). Then b; = b;b; (b;e B?,bje T), and
g =11 (IT (£;£,)%)°
beT bi=b
=TI (IT (&%) £,)°

beT by=b

=11 (l,£,)° where [,elL.
beTl

Note that g, [, £, all belong to W, ;£,n A and therefore each has its support contained in B,
However, supp (1,§,)? is contained in BPb~1, and since these cosets are pairwise disjoint,
suppg = U supp (4£,) < B,

whence, if 4 is a non-trivial element of T, supp, £, is empty, and so [, = 1; thus ¢ = /,£, and
therefore belongs to L§,.
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To complete the proof of (4.2.22) observe that the sub-bigroup carried by
(LinA)A,n (Lyn A) A,
is determined by t-biwords, one of which is ¢’, say. Lemma 4.2.26 shows that

ge@ind)gn (Lyn A)§, = (Lin Ln A)§,
< (LinLyn A) A,
This completes the proof of (4.2.22).

To finish off the proof of (4.2.21) we need to show that A, is one-to-one. If L; A, = L,A, then
LA, n B = L,A,n B so that, from (4.2.24), (L,n B)¢, = (L,n B)&, whence L;n B = L,n B.
Also L;A,n A = L,A, n A and therefore, by (4.2.24), (L;n A)A, = (Lyn 4) A,. Now (Lyn ) A, is
determined by f-biwords /£,(Ie L, n A), and (4.2.26) then gives that /£, belongs to (L, n 4) £, or
that / belongs to L, n A. That is, L,n 4 is contained in L, n 4. In a similar way we prove that
L,n 4 contains L;n 4 and therefore L,n 4 = L,n A. Hence L, = L,, and this completes the
proof of (4.2.21).

We now derive some properties of the embedding A, which are essentially extensions of
(4.2.13).

LemMA. If A,_, has ascending chain condition then to each U in A, with U contained in A, there corre-
sponds a unique L in A,_,, with L contained in A, and a natural number v = v(U) such that
[LA,,vB] < U < La,. (4.2.27)
Proof. To each ¢ in U associate the t-biwords ¢y, ..., ¢4 of (4.2.13) and the natural numbers,
v, say, involved there. If S, = cl{gy, ..., ¢4} then
(5,52, B) < clig} < S,
As the g, are f-biwords, there exists L, in 4, ; with LA, = S,. Write
L =1I{L,:qe U}.

Since 4,_, is assumed to have ascending chain condition, L is the join of finitely many L s, say,
of those corresponding to ¢ in the finite set X. Put v = max {y,: g€ X} and then

U<II{S,:qe U} = II{L,A,:qe U} = LA,;
and [LA,,vB] = [II{L,A,:qe X},vB]
= I{[L,A,,vB] :qe X} < TI{[L,A,,v,B] : e X}
< U,

which finishes the proof of the theorem except for the uniqueness of L: if there exists L', v with
the asserted properties, then

[L'A,v'B] < LA, and [LA,vB] < L'A,
and lemma 4.2.15 shows that L'A, < LA, < L'A,, or LA, = L'A, when L = L’ from (4.2.21).

The last lemma necessary to prove theorem 4.2.3 is the following.

LemMmA. Suppose A,_, has ascending chain condition. Let L be in A,_, with L contained in A, and let
v be a natural number. There exists a natural number s = s(L, v) such that if q in LA, ts uniform and involves
mote than s elements of the free generating set {z,, z,, ...} then q is in [LA,, vB]. (4.2.28)
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Proof. The proof will be by induction on v. If v = 1 then ¢ in LA, can be written

t
9= H [91» Zgil’ (XS] Z'lb;m] “i?

where 1 < 0;; < p—1foralli,j, and (0, ..., 8;,) are distinct for distinct 7. Employ (4.2.7) u times
to deduce that
yfie (LA)s, t€{l,...,t},

u p
where ¢ = ¥ max;d;;. Lemma 4.2.15 then yields that y{i belongs to LA, whence ¢ belongs to
i=1

[LA,,uB)]. Hence s = v will do, and the proof of the first step is complete.

Assume, therefore, that v is at least 2 and that the lemma is proved for v — 1. Associate with ¢
the uniform f-biwords ¢y, ..., ¢; of (4.2.13), By (4.2.13) and (4.2.15), ¢;, ..., g5 belongs to LA,.
Suppose that ¢; involves s; variables z;, 1€ {1, ..., d}. Let L in A,_, be defined from L according

0 (4.2.27), and define

‘ s(L,v) = s(i,v(L) +v) +,

where v(L) is defined as in (4.2.27), assuming inductively that s can be defined for v —1.
Now by (4.2.18), ¢ is in the normal closure of ¢y, ..., ¢;. Hence we may write

t
0 = T g5, 25 -

where 1 < a; < p#—1, all j,/. We may assume, by using suitable deletions that if ¢ involves
precisely the variables yy, zy, ..., z, (where u > s(L,v)) then for each j, the set of variables z,,
involved in ¢;; together with z;, ..., z; i is just {zy, ..., z,}. If forsomejin {1, ..., 8}, 5;; < s(L,v) —v
then |{k;y, ..., ],.}l v and therefore the commutator beginning with ¢;, belongs to [LA,,vB].
If, on the other hand, s;; > s(L,v) —vfor somejin {1, ...,t}, then Sg; > s(i, v(L) +v); hence
05 &7 (LA, (o(L) +0) B]

= [[£A,_,»(L)B],0B]

< [L,»B)
so that ¢; € [L, vB]A, < [LA,,vB]. Clearly, then, the commutator beginning with this g;; belongs
to [LA,, vB]. Therefore ¢ belongs to [LA,, vB].

Proof of (4.2.3). We use induction on v, the result being obvious for » = 0. Suppose, therefore,
that 4,_, has ascending chain condition for some v > 1 and that U; < U, < ... < U; < ...isan
ascending chain in 4,. Clearly the chain

UnB<UnB<...<UnB<
terminates in a finite number of steps; hence it suffices to consider the chain of the U;n 4, or,
without loss of generality, to assume U; < 4, ieI*. In this case (4.2.27) ensures that there exists
to each 7 in I+ a unique L;in /4, , and an integer v; such that

[L; A, v; Bl < U; < LiA,
Now i < j implies LA, Bl < i\U;\L,.A,,
and (4.2.15) and (4.2.26) give L; < L;. Under the inductive hypothesis it follows that there exists
an integer m such that for m < ¢, L,, = L;. Hence for m < ¢
[LnAs v, Bl < U; < LA,

By virtue of (4.2.28) there exists an integer s, = s(Lm, v,,) such that if ¢ in Uj is uniform and
involves more than s, variables z;, then ¢ belongs to [L,,A,,v,, B]. It follows that U; can be
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determined, modulo [L,, A, v,, B], by bilaws involving at most y;, zy, ..., 5. By theorems 2.1.2
and 1.5.4, L, A, is finitely based, and therefore so is the sub-bigroup carried by [L,, A,, v,,B]; we
may suppose the latter to have a basis involving £, variables z;. Hence U; (m < 7) is defined by
laws involving at most s, + £, variables z;. It follows that the biverbal sub-bigroup lattice between
the sub-bigroups carried by [L,, A,,v,, B] and L,, A, is isomorphic to the corresponding one in
the free bigroup of rank (1, sy +£,) of Ao A,». This is, however, a finitely generated metabelian
group, and, by a well-known result of P. Hall (1954), has ascending chain condition on normal
subgroups. This completes the proof of (4.2.3).

REmArRk. Now that (4.2.3) is proved the condition on A, ; in (4.2.27) and (4.2.28)
is unnecessary.
Combining (4.2.3) and (4.1.18) we have

TuEOREM. For all natural numbers m, n A(N,,oN,,) has minimum condition. (4.2.29)

(Note that, by varying slightly some of the proofs in § 4.1, we could strengthen theorem 4.2.29
to give minimum condition for the lattice A(A o2, ); this was done in Bryce (1967) but is
unnecessary here as we shall see.)

We are now in a position to prove the following theorem.

TuroreEM. Let U be a sub-bivariety of W, 0 W,p which contains €o W, p. Then there exists a unique
sub-bivariety L of Wpao N,,5-1 containing o Wy p-1 and a nilpotent bivariety N~ such that

U = (L(CoU,) AAoA) v A

Moreover if U is not nilpotent it is join-irreducible if and only if £ is join-irreducible. (4.2.30)

- Proof. The lattice homomorphism Az: A4, ;- A, defined in (4.2.20) induces a lattice homo-
morphism A% : A(pa 0 Wpp-1) > A(Apa0 App) (by virtue of (1.4.14) and (1.5.4)) which is one-to-
one by (4.2.21). Indeed all the properties of A, proved in (4.2.21) to (4.2.28) hold for A% (or
rather for its dual). In particular, if €o%,s < % < Upe0 A, s then there exists a unique £ (by
(4.2.27)) with Co U, p-1 < L < Apa0A,p-1 and an integer v such that

LN < U < [LAf,vE0 €] (4.2.31)
Also it follows from (4.2.28) that for some suitably large natural number ¢,
[LA%,v€0 €] < LAGV (N A UpeoWyp) (4.2.32)

(here definitely using the finite exponent to give that a commutator of high weight is a uniform
biword involving large numbers of variables; .#,, is the variety of bigroups whose carriers have
class at most ¢). The modular law applied to (4.2.31) and (4.2.32) then gives the first assertion
of the theorem, since
LA = L(CoU,) A Ao Al

If % is join-irreducible then % = £A% and since A% is an isomorphism, % must be join-
irreducible. Conversely, suppose that € 0 U ,s-1 < & < Upa0 Ay p-1and that £ is join-irreducible
whilst ‘

4 Aﬂﬁ(’ = 02/1 \Y% %2.

At least one of %, %, say %, must contain & o U,,4; if %, also does, then we may apply the first
part of the theorem to deduce the existence of £, %, A", A1 such that

LN = (LN L A%) v (N v AT
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whence # = %, v %, (by the uniqueness) and so ¥ = %, say; and LA} < %, < LA} which
proves what we want. If, on the other hand, %, A€o,z = Eo A,y with 0 <y < f and %,
is not a subvariety of %,, what we have just shown proves that

LNk = Uy G o Uy,

Now v is non-zero or else £ = U, 0E v Eo App-1; it follows that ZA% has a bilaw [y, 28" ] and
therefore that . has a bilaw [yy, z7’] where #—1 > 8 = y —1 > 0. This means that
CoWpp—1 < Z < UpuoWys vV E0 W pp-1
and then, by modularity, that
L = (UpaoUys A L)V EoUpp-1.

The join-irreducibility of % and the fact that %, does not contain %, would now give that
EoApp-1 is not contained in £, a contradiction. Hence %, is a subvariety of %, and we are
finished.

To sum up the results of this chapter on join-irreducibles:

THEOREM. The non-nilpotent join-irreducibles in A(Wo N) of finite exponent can be described (iteratively)
as follows: ,

(i) ZL(CoA,) AUoN, p prime, L join-irreducible of p-power exponent, ¢ + €o €;

(i) %(CoW) AUoU, U join-irreducible of p-power exponent (p prime), UP + €o€, pAft,
te{2,3,...). (4.2.33)

4.3. The bivarieties W a0 N,

The problem of determining all subvarieties of %,, 0 %,, has been reduced (though with possible
ambiguity) to the case when m, n are powers of the same prime. In general this case seems to be
difficult, and (4.2.30) is the best we can do. Only in the case § = 1 do we get a complete picture.
First we prove two lemmas similar to (4.2.7).

LemMmA. If, in the notation of (4.2.2), ay, ...,a,_; are ﬁxed elements of A, and if U is normal in W,
such that for all b in B

p—1 X
p= 'HO[ai’ Zb] € U:
i
thena,cU; (0 << p—-1). (4.3.1)
Proof. Using the identity (0.2.1) we may express p as
p-1
p = Mla,b"]el,
1=0
where each a; is a linear combination of g, ...,a,_;, and a;; = a,_;. From (4.2.7) we deduce
that a,_, is in U),_;, whence
n—2
11 [a;, 6] e U.
i=0
An easy induction is indicated to finish the proof, and the details are omitted.

LeMMA. Define o = (py, ..., ptg) where 0 < py < p—1 for all i. If a(w) are fixed elements of A, and if
Sorall by, ...,b,in B
]._.[ [a(p‘):/‘(’l bl: -us/"sbs] eU
®

(where U is normal in W), then a(w) €U, where T = poy + ... + fbge (4.3.2)
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Proof. We proceed by induction on s, the case s = 1 being covered by the last lemma. For
1€{0,...,p — 1} write
a4 = l—.[[a(p'>’ﬂ1 bl: "'nu’s—lbs—l];

Js=1
then I12-[a,, i6] belongs to U for all b in B. Hence, by (4.3.1), a; belongs to U, i€{0, ..., p—1}.

Now pg = pg implies (py, ..., p,_4) is different from (py, ..., ps—) if p is different from p'. We may
then, by induction, assume that
a(w) € (Uy);

where j = puy+ ... + 4, 4. Thatis, a(p) isin U, 7 = ¢ +j = py + ... + 4, for each p as required.

Before beginning the statement and proof of our main results in this section, we introduce
the following notation. Write X, for the split-free bigroup of rank (1,00) in €,z0%, on the
split-free generating set {y,} U {zy, 25, ...}. It is clear from (4.2.1) that the lattice of normal, fully
invariant sub-bigroups of X, is dually isomorphic to A(,«0A,). Write (d, o) for the fully
invariant closure of [y, z,, ..., 27]?’ in X ,; abusing convention, then

NotaTioN. Ford > 0, 0e€{0,1,...,a —1}

, (d, o) = cl{[yy, 29, ..., 24)""}. (4.3.3)
TrEOREM. Every fully invariant sub-bigroup of X, contained in 4,(X,) can be written as a product of
Sfinitely many (d, o)’s. ' ' (4.3.4)

Proof. From (2.2.4), every fully invariant U contained in 4,(X,) is the closure of uniform
biwords of the type

13
9= ,Hl[yluuilzl, ---n“iszs]ai,
i=

where 1 < py; < p—1,1 < oy < p*—1, all4, j, and where ¢ # jimplies (fgq, ..., fhgs) F (W15 «vesjs)-
Lemma 4.3.2 gives that

yrie (gl 7i=pa+ ...+
Clearly, then ¢ is equivalent to a finite set of (d, o)’s and therefore so is U.

With this theorem we can in fact determine all sub-bivarieties of 2,0 ,,; however, we have
as yet no way of knowing when two different sets of (d, o)’s determine different sub-bivarieties.
We take up this problem now.

THeEOREM. The commutators

[ylnu’lzl, ---’urzr]a
r>0,0<u; <p-—1forie{l,..  r}and p, > 0, form a basis for 4,(X,). If d > 0, then a basis for
(d, o) is the set of all bP", where b is a basic commutator of weight at least 2 and where T is minimal with
respect to o < 7 and wth + (1 — &) (p—1) = d+1; the set {b*": b basic} is a basis for (0,0).  (4.3.5)

Progf. The set of commutators of the type described certainly generate 4,(X,): the only thing
to check is that, using the identity

p—1 .
[y1,02,] = ,I:II[yv iz,]~)

we can remove p or more repetitions of any variable z;, replacing the offending commutator by
a product of commutators each of which has fewer than p occurrences of z;. That these com-
mutators with few repetitions are basic follows from (4.3.2); for, if

t
l—li [yl"uﬂ Z1 ""luisizsi]ai = 1’
i=

41 Vol. 266. A.
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where (p;y, ..., p;;) is different from (p4, ..., ,ujsj) whenever ¢ is not j, and where 0 < p; < p—1,
Mg, > Oforallzin {1, ..., t}and [in {1,...,s;}, then, if s = max {s;: 1 <7 < ¢} we have, by defining
My = 0for s; < [ < s where necessary, that

t
Hl[yl’/’b’ilzla ...,,uiszs]“i = 1,
i=

with (g, ..., p) different from (p;y, ..., ;) when ¢is not j. We may therefore apply lemma 4.3.2
to deduce for each ie{l, ..., ¢}, that
[yla 2150005 ZT]“i =1,

where 7 = p; + ... + jiz; this would then be a bilaw in X, and therefore p* divides «;. For if not,
then [y?*7%, zy, ..., z,] = 1 and therefore [y, 2, ...,2,] is a bilaw in C, wr CJ, which is not true
(see Liebeck 1962). Hence p* divides o, for all 7, and this shows that the set of commutators
[y, 1245 ..yt z,] With 7 = 0, 0 < p; < p—1 and g, > 0 is a basis for 4,(X,).

It is quite clear that the set {*” : b basic} is a basis for (0, o), but the remaining assertion of the
theorem requires proof. The crucial point is the following result.

LemMma, (e,7) < (d,0) ifand only if o < 7,d =0ife=0andd < e+ (1—0) (p—1) ife > 0.
(4.3.6)
Proof. The first part is easy: if (¢,7) < (d, o) then [y, z;, ..., 2,]?" can be written as a product of
p°-th powers, and hence, if & > 7, [y, 2y, ..., 2,]J°* " = 1 which, as we have observed, is impossible.
Alsoife = 0 and d > 0, then y¥" can be written as a product of commutators all involving at least
one z;; then by deleting z; for all j, we have y¥” = 1 which is a contradiction,
Suppose therefore, that ¢ > 0 and o < 7. Then we prove that

(697) < (e+(7_0-) (p—l)ao') (4'3'7
and (e,7) & (e+(1—0) (p—1) +1,0). (4.8.8)
Consider the identity

~—

»
[yla Z1s - ->Aze+r]p = .Hz[yb 215 eees Zetr—1> Zze+r] _(f);
i=

from this one deduces that forr < p—2

(e+7+1,1) < (e+p—1,0)
implies (e+71,1) < (e+p—1,0)
and therefore, by downward induction on 7, (¢,1) < (¢+p—1,0). This then gives by induction

on 7 —o ((4.3.7) is trivially true if 7 = o),
(e,7) = (6, )P < (e+p—1,0)p" "
=(e+p-L7-1) < (e+p-1+(r—1-0)(p-1),0)
=(e+(r=0)(p-1),0).
This proves (4.3.7). The proof of (4.3.8) is more difficult, and uses the next two lemmas.
LemMa. If m > 0 and

p—1 _
(41, mz1] = '1:[1[%’ izy]%m D

andifm=p+(u—1)(p=1)+r,0<r<p—-1,0 < p, then
(1) @ = Omplies 0(m,t) = 1,0 according asm = ¢ or m = i;
(i) 7 = 0 implies p*|8(m,1), 1 < i< p—1;
(iii) pr > 1 implies pr+1|8(m, i), 1 < ¢ < 7 and p*|6(m,7),r+1 <i < p—1. (4.3.9)
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Proof. Clearly (i) is a consequence of the uniqueness already proved in (4.3.5). Forp = 1,7 = 0,
(ii) is easily seen to be true. Suppose that the lemma has been proved for some m with m > p.
Then

(91, (m+ 1) 21] = [y, 21, m24]

and so, by the uniqueness from (4.3.5),
d(m+1,i) = 0(myi—1)— (B)0(m,p—1), 2<i<p—-1, S(m+1,1)=—pd(mp—1).
By assumption p#+1|8(m, 1), i < r and p#|0(m, 1), r < i, whence the proof may be completed.
LemMA. If my,...,mg > 1 and
(Y1, My 24, ..oy Mg 2g] = I:[ (Y1571 215 <oy 1g 20)P0

where i = (iy, ..., lq) with 1 < t; < p—1, thenmy+ ... +mg > d+7(p— 1) + Limplies p+|f(1, ..., 1).
(4.3.10)
Proof. With d = 1 we have d+7(p—-1)+1=p+(7—1)(p—1)+1 and lemma 4.3.9 applies.
We use this as a starting point for induction on d. Suppose mg = ¢(p—1)+p > 1,0 < p < p—1,
0 < ¢. Then
Myt tmgy > (d-1)+(7-¢) (p-1) - (p—2).
Now if [¢1, M1 215 ooy M1 2g-1] = W[ Y1, 01215 o5 Ty Zq—1]7?, then we may assume inductively
that
Y y(1,..,1) if p <,
0y, 1) if 1<p.
B, ..., 1) =0(mg, 1) y(1,...,1);
and P8 (mg, 1) if 1 < p,
P#|o(mg, 1) if p < 1.

Also from (4.3.5),

In any case, p7t1|8(1, ..., 1) as required.
Proof of (4.3.8). If (¢,7) < (e+ (T—0) (p—1) +1,0), then

(Y15 Z1s v Zo)?" = ;[ Y101 215 o5 Je 2e]P7F D (%)
where ji+...+j, = e+ (1—0)(p—1)+1. Now (%) can be rewritten by replacing each
[Y15J1 215 -+-sJe 2] by a product of powers of basic commutators. Then, using the uniqueness

from (4.3.5),
[yly zl) LRR] ze]pT = 1—[J [yb Zla ceey ze]paﬂ(j)y

where for each j, p7=o+| f(j) by (4.3.10). Hence
" =1"Zh(j),
and since the right-hand side of this equation is divisible by p"+! we have a contradiction. This

completes the proof of (4.3.8).
Proof of (4.3.5). If d > 0 and b,, ..., b; are distinct basic commutators such that

b bhe(d, o),
41-2
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then, from (4.8.2), if b, has weight ¢; + 1, and p7i is the largest power of p dividing £,
) (ei> Ti) < (d> 0-)
whence, from the part of (4.3.5) already proved, and (4.3.6),
o7y 6>0, d<e+(r,—0)(p-1).
This completes the proof of (4.3.5).

The main result of this section can now be stated. As the proof is of a routine nature using
theorem 4.3.5 we will omit most of the details.

THEOREM. Every non-trivial normal, fully invariant sub-bigroup U-of X, can be written uniquely as
U= Az(Xoc)e' (do'a 0-) cee (doc—la o — l)
where € = 0, 1 (according as z,¢ U or z,e U) and
(i) €= limplieso =0,d, < 1;

(ii) if pedfo, ...,o0 — 2} then
Sdy—p+1, i p<dy,

dypi i< L f 1<dg<p-1,
=0, if 0=d, (4.3.11)
Proof. Theorem 4.3.4 ensures that every non-trivial U can be written as a join as indicated;
if z, e U then [y,, z,] € U and hence U contains (1, 0).
Let o be the smallest element of {0, ..., &« — 1} for which (d, o) is contained in U for some integer
d, and let d, be the smallest integer such that (d,, 7) is contained in U for o < 7 < & — 1. Since
by (4.3.6)
(d7+1) < (d+p-1,7)
for d > 0, we have that d, > p implies d,, < d,—p+1. If1 < d, <p—1thenforalld >0
d,7+1) < (d+p-1,7) < (d,,7) < U,

hence d,;, < 1. If d, = 0 for some 7€{o,...,a—2} then clearly d,,, = ... =4

a

_1=0. This
establishes the existence of such a join decomposition for U.
The uniqueness is a consequence of the next lemma, whose proof we omit.

LemmMa. If (d, 1) < (d,,0) ... (dy_y, o0 — 1) where d, ...,d,_, satisfy the condition (ii) of (4.8.11),

then o < Tand d, < d. (4.3.12)
CoroLLARY. Let J = {0, 1, ...,7, ...} U {00}, (4.8.13)
and T = {0, 1} have their natural orders, then the lattice
TxJe

embeds A (W a0 W,). In particular A(N,e0 W,y is distributive.
The details of proof are routine and we omit them.

CoRrOLLARY. Theorems 4.3.11 and 4.1.8 afford a complete description of A(N,,0N,) if m is nearly
prime to n. In particular A(N,,0N,,) is distributive in such cases. (4.3.14)

CoroLLARY. The join-irreducibles in A(A,00 W) are:
(i) non-nilpotent: Wpo0 A,y, oefl, ..., a};
(ii) nilpotent: €o Ay, oo €, 0 {0, 1,...,0};

Wpro Ay AN, oe{l, . o}, ¢>(c-1)(p—1)+2. (4.8.15)
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Proof. Tt follows from (4.2.33) immediately (and, of course, from (4.3.11), with more trouble)
that the non-nilpotent join-irreducibles in 4 (,«0 %, ) are as stated; hence we may concentrate
on nilpotent ones % that contains €o ,; and we may as well assume further that .0 € < .

Then (4.3.11) yields that

U= (dy,0) (dy,1) ... (dy_y,t—1), (4.3.16)
where the d’s satisfy condition (ii) of theorem 4.3.11 with d, ; > 1. Moreover, for all
oef{0,...,a—2}, dy—dypy = p—1.

For, if not, let 7 be the first element of {0, ..., & — 2} for which d, — d,, is different from p — 1; then
ifd, —d,, is greater than p — 1 and we write

Uy = (= 1,0) ... ;= 1,7) (dyny7+1) ... (dypy— 1),
and Uy = (dy, 0) .. (ds7) (dya = 1,7+ 1) ... (dyy = La 1),
these are expressions satisfying condition (ii) of (4.3.11) with
Uy+U+U, and U=U,n0,,

contrary to the assumption that % is join-irreducible; if 0 < d, —d,,; < p—1 we conclude that
d,,; = 1 and, by writing

Uf = (dy,0) ... (d,_4,7—=1) (1,7) (1, 7+1) ... (1, = 1)
and U;k = (d0> 0) e (d‘r—1>T_ 1) (dr’ 7) (O$T+ 1) A (07 x— 1)>
we see that these are expressions satisfying condition (ii) of (4.3.11) and that

Uf+ U+ Uf¥ and U= Ufn Uf

again contradicting the join-irreducibility of %; and finally if d, = d,,; (= 1 of course) then

we put
Uik* = (d0_17 0) e (dr—1_177_1) (1:7) (1’7+1) (170‘_1)

and Us* = (dy, 0) ... (d,_4,7—1) (0,7) ... (0, —1),
so that Uf* + U=+ Uf* and U = UF*n UF*,

again a contradiction.

- Hence if % is join-irreducible then the decomposition (4.3.16) is ‘redundant’; that is
U = (d,, 0) with
' dy=(x=1)(p-1)+d, 4 > (x—1) (p-1) +1.

It is easy to verify that (4,0) is join-irreducible if d > (¢—1)(p—1)+2 and not when
d = (a—1)(p—1)+1. The proof of (4.3.15) is therefore complete.

4.4, The bivarieties Nyu0 Upa A A,

In this section we give a classification of another class of bivarieties, and produce an example
of a non-distributive bivariety lattice. First note the following:

Lemma. A4 bigroup G in Wo N has the bilaw [y, 24, ..., 2g|™ if and only if G has the law

[K15 Xy o ovy Xgpa]™ (4.4.1)
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Proof. Now G has the law [xy, X, ..., X5,,]™ if and only if G has the bilaw [y, z,, ..., Y441 Z441]™
Modulo the bilaws of Ao A we have

(Y1215 o> Yar1 Zas1] = [Y1 Zos ooos Zaa]® [ 205 Y2 23y -5 23447

and therefore [y, 2y, ..., Yg41 24.1]™ is equivalent, modulo the bilaws of Ao A, to [y, 2y, ..., 24]™
Note that, in particular, G has class ¢ if and only if G has the bilaw [y, zy, ..., z].

Noration. Denote by A, the variety of all bigroups whose carriers have class at most c. (4.4.2)

NoraTioN. Let Y, be the split-free bigroup of rank (1, 00) in Wpa0 Wye A A, and again abuse convention
by writing (d, o) for the normal fully invariant closure of [yy, 2y, ...,24]?7 in Y,, de{0,...,p—1},
0€e{0,...,0—1}. (4.4.3)

TueoreM. Every non-trivial normal, fully invariant sub-bigroup U of Y, can be written uniquely as

U= AZ(Ya)pY (dw U) (da—-l’ o— 1)
where y€{0,...,a}, 0€{0,..,a=1}, p—~1>2d, >...>d, 1 >0, and of v < o then o <y and
d, < 1. A(Wpe0o Apa A Np) is distributive. (4.4.4)

Proof. That every U has a decomposition of this form follows from (2.2.4) and (4.3.2); choose
o as the smallest element of {0, ..., @ — 1} for which there exists 4in {0, ..., p — 1} such that (d, o) is
a sub-bigroup of U, then choose d, as the smallest 4 for which (d,7) is a sub-bigroup of U,
o <7< oa—1 Clearlythend, > ... > 4,

o

_1- The rest of the proof will follow easily from the next
lemma which will also prove useful again in this section; we omit its proof.

- LEmMA. The carrier of the split-free bigroup of rank (1,1) in Wya0 Wpa A Np 1 (where o > 1) can be
presented on the generators ay, ..., a,, b subject to the defining relations
= = =a T =" = [a5a] =1, 0<i,5<p,
af:’ = ;85,4 a;’o =a, 0< i< p-1 (4.4.5)
Return to the proof of (4.4.4). If (d,7) is contained in U then (d,7) is contained in
(d,,0) ... (d,_1,00 — 1) and therefore
(dyo—1) < (dypyt—T=1+0)...(d,x—1)
< (@ o—1=140)..(d,a-1)
= (d,a—17—-1+0).
However lemma 4.4.5 yields that, even in the free bigroup of rank (1, 1) in 2,20 2,z A4, (with
o > 1) this can happen only ifd > d,, a =1 > a —7—1+0; that is, d > d, and 7 > o, whence
(d,7) < (d,, 7). Since v is quite clearly unique, we have shown that this expression for Uis unique;
it only remains to remark, that z{’” € U implies [y, z§"] € U and that [y,, zY”] and [y, z,]?? are

equivalent modulo the bilaws of 2,20 ,a A A, from (4.4.5). As the case a = 1 is covered by
(4.3.11), this completes the proof of (4.4.4).

CorovLLARY. The join-irreducibles in A(Uya0 Wpa A A) are:
%[po' (o} (‘g, Co g[pa', QIZ,T [0} QIZ,T ANy
where 0 €{0, ...,a}, Te{l, ..., o} and c€{2, ..., p}. (4.4.6)

COROLLARY. Let & be a subvariety of ., 0 W, in which the carriers of bigroups which are p-groups have
class at most p. Then (4.4.4) and (4.1.8) provide a complete description of A(A); in particular A(R) is
distributive. (4.4.7)
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THEOREM.I (20 Wye A A}, 4) 15 not distributive. (4.4.8)
Proof. We show that in the split-free bigroup of rank (1,1) in 2,202 A A}, there exist
normal, fully invariant sub-bigroups V,, V,, V, which are pairwise incomparable and whose
pairwise joins and intersections are respectively equal. Let V,, V,, V; be determined by the
bilaws
[y, 2:]% [y, 28], [91,07]

respectively, and let V be determined by [y, 2z,]7. In the notation of (4.4.5) it is clear that

V= <dlé, (XS] d£_1>,

Vl = <(l€, V>, V3 = <ap5 V>‘

Uygo UgA A3

B =Wy Uy

UsoU A A

Ficure 1

1 Contrast A(AUARN,,;) which is distributive (W. Brisley, unpublished). A routine modification of the
present result shows that A(A,: e A Nyy,) is not distributive.
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Also since [ag, 67P] = ﬁ [ag, 16]07) = af® as")
i=1
= (d{] ap)k

modulo V (using the fact that (IZ]) = k(mod p)), we have that

VZ = <aﬁloap: V>
Hence (4.4.5) yields that NV, = V,Vy = VoV = (af, a,, V), and VinV, = Von V3 =Von ¥V = V; and
clearly ¥, V,, V,, V are all distinct. This completes the proof of (4.4.8); a picture of the lattice

A(Ay0 Uy A A3) is drawn by way of illustration (figure 1), but it is not here verified that it has
this precise form.
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CHAPTER 5. SUBVARIETIES OF A 0 U OF INFINITE EXPONENT

Theorem 4.2.33 gives a description of the join-irreducibles in A(2 o %) of finite exponent in
terms of the nilpotent ones. For infinite exponent subvarieties of %o A we here obtain a canonic
decomposition which enables us to write down all the infinite exponent join-irreducibles (for
example see (5.3.1) and (5.5.1)). Theorem 5.5.7 sums up all the information we have obtained
on join irreducibles. Minimum condition for /(2o %) is derived in theorem 5.4.10.

Much of this chapter is closely modelled on the work of L. G. Kovacs & M. F. Newman on
varieties of metabelian groups. In particular I would mention (5.1.2) and its consequences,
notably (5.2.3), and the fact, exploited several times, that the torsion subgroup of 4,(F, ()
(where # < Ao A) must have finite exponent. Statements of the Kovacs & Newman results are
included as (6.1.1) and (6.1.2); the close analogy with (5.2.3) and (5.5.1) is obvious. I want to
stress that, though some of the details here are different from theirs, the underlying philosophy
of this chapter is that of Kovacs & Newman. '

5.1. Preliminaries

A number of lemmas, necessary to the later parts of this chapter, will be proved here.

LEMMA. If m, t are coprime, then the bigroup C,, wr Cy generates N, 0 N, The bigroup C,, wr C generates
A, 0 A. (Here C,,, Cy are cycles of order m, t, and C is an infinite cycle.) (5.1.1)

Proof. Let G be critical in U, 0 Ay; then if either 4,(G) or 4,(G) = 1, G is in svar {C,, wr C}.
If 4,(G), 4,(G) are non-trivial then by (3.2.1), 4,(G) is cyclic, and 4,(G) is generated qua
A,(G)-group by a single element; hence since C,, wr C is the split-free bigroup of rank (1, 1) in
A,,0 A, G is an epimorphic image of C,, wr C. That is, %,, 0 U, is generated by C,, wr C;.

To prove the rest, suppose that {#, f,, ...} is an infinite set of natural numbers all prime to m,
with t;|¢;,, for all ieI*. We show that U, 0% = V{U,0Uy,;:7 = 1,2,...}; clearly this implies
that C,, wr C generates 9, 0 9. Consider the descending chain

Ay (W) [Ay (W), Ao(W)"] > Ap(W)5 [A(W), A,(W)"] > ...

of biverbal sub-bigroups of W = F, (,,02); these biverbal sub-bigroups are those correspond-
ing to the bivarieties 2(,,0 A;.. Now the chain

AWt = Ay(W)l2 > ...
has trivial intersection, and therefore, since the support of an element of [A4,(W), 4,(W)¥] is
contained in 4,(W)%, the chain '
[4:(W), Ay (W)h] > [Ay(W), d,(W)"] > ...
also has trivial intersection. This concludes the proof.

The next lemma is a trivial adaptation of an unpublished result of L. G. Kovacs about varieties
of metabelian groups.

LemMmA. If U is a subvariety of o A which does not contain N, 0 N, then all bigroups in U satisfy
the bilaw

. . [yb rzﬂt,
Jor some integers v, s, t withm{ 1. (5.1.2)

42 Vol. 266. A,
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Proof. Consider the split-free bigroup of rank o in %, call it W say, on the free generating set
{ay, ag, ...} U {by, by, ...}. Then

v .
IT a3t =1 (5.1.3)
1=0

for some integers «,, ..., a, with o, not divisible by m; for, if there is no such relation holding, the
sub-bigroup of W carried by {a, 4,) is isomorphic to C,, wr C which generates 2, 0 %, by (5.1.1).
From (5.1.3) we deduce that

ag? =1, jel{o,...,v}.

I

1

Working in the endomorphism ring of 4,(W) we have
i—éoai b =0, je{o,...,v}.
This implies ay IT;_;(b5 —{) = 0 and so oy IT;;(67 —1) = 0. Hence
ot TT (BF — 1)o-%+1 — 0,
k=1

whence g (B3t — 1)de+D = 0,
Putr = fv(v+1), s = vl ¢t = oy and we have
[aq, B3]E = 1.

- LemmA. If U is a proper subvariety of Wo N then there exist natural numbers c, s, u such that U has a
bilaw [y, 25, ..., Z5]% (5.1.4)

Proof. The argument is similar to one of Gupta & Newman (1966). By (5.1.2) % has a bilaw
[#1,721]t. Hence (assuming 7 > 2 and using (0.2.2) modulo U)

Ly, 72328, (r — 2) 23]t = [y, (r = 1) 2§, (r — 1) z3]*
is a bilaw in %. Substituting a product for each of z,, z,, ... in turn we deduce finally that
(91 21, .05 z2]"
is a bilaw in % where ¢ = 21 and u = t.7(r—1)2 (r—2)%... 22,
LEmMA, Let F = F, (o A) be freely generated by {ay, a, ...,} U {by, by, ...}. The commutators
(@571 615 oo 30 0u)s  J1seeesfu = 0, and v > 0 implies j, > 0,

it tp<c—=1 (c=1) (5.1.5)

are linearly independent modulo F,, 1) and generate A,(F) modulo F, ). (5.1.6)
CoROLLARY. F|F, ;) ~ Fy (A, A Ao A) is torsion-free. (5.1.7)
COROLLARY. F, ;) is complemented in A,(F). (5.1.8)
Proof of (5.1.6). We use induction on ¢ to prove that these commutators generate 4;(F) modulo

Fiyy. For b in 4,(F), & = a;a; 0]

and therefore {ay, a,, ...} generate 4,(F) modulo F,. Suppose therefore that the assertion is
proved for ¢ — 1, and let ¢ be an element of F,) — Fi,, ). Then ¢ can be written, modulo Fi,,,, as
a product of powers of commutators of the type

[avbjl b%l, .o -’j'v b":;:l],
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where j; + ... +J, = ¢ — 1. Using the identity [x,y~] = ([*,y] [#,v,y7'])~* we may then write g,
modulo F, ), as a product of powers of commutators of the type

[ai:jl bl} .. -,j'v bv]>

where j, + ... +J, = ¢ — 1. Combining this fact with the inductive hypothesis completes the proof
except for the independence.

Suppose that we have a linear relation among the commutators (5.1.5) modulo F{,,,) which,
by using appropriate deletions and renaming variables as necessary, we may assume to be of the

form
u

Icl——I [al:.]kl bl: . wjkv bv] & EI?(c+1),
where 0 < jj; for all £, [ and X}_1j,; < ¢—1. Let p be a prime greater than
max {j, 021 <k <u, 1 <U<0}

and consider the natural homomorphism of F onto F, (2,0%,): (4.3.5) then yields that o, are
all zero as required.

THEOREM. Let s, ¢ be natural numbers. Then the bivariety (N ,(€o W) A Ao A) v A, 0 A is determined
modulo the bilaws of Wo W by the bilaw [yy, Z4, ..., z5]%. (5.1.9)
Proof. A,(€o A,) A Wo A is certainly determined modulo the bilaws of Ao A by [y, 25, ..., z5].
Now if F = F, (Ao ),
4,(CoUA(F)) = 4,(F)

and by Neumann (1964, lemma 8.2)

CoA(F) >~ F
Hence by (5.1.8) (A, (EoU) A Ao A) (F) = N,(€o A(F)) is complemented in 4, (F). Therefore
A (F)in (A (CoU)A Ao A) (F) = {(AN(EoA)A Ao A) (F)}

as required.

LemMA. Let IT be an infinite set of primes and H a nilpotent, finitely generated torsion-free bigroup. Then
H is residually of prime (e II) exponent. (5.1.10)
Proof. The corresponding result for groups is true (cf. Higman 1955). Hence if £ is a non-trivial
element of H there is a normal subgroup N, of H avoiding % such that H/N, has exponent in 7, and
N{N,:1 % heH} = 1. Write
M, = ((4,(H) n N,) (45(H) 0 N,))H,

so that M, carries a normal sub-bigroup of H. Now for i = 1,2,
A;(H)nM, < 4;,(H)n N, < 4;(H) n M,

so that 4;(H) n N, = 4;(M,,). Hence if H|N, has exponent p, H|M, is a p-group; and since we
may assume p greater than the class of H, H|M, is regular. Therefore, if a, b are elements of
A,(H), A,(H) respectively

(ba)? = bPaPc? (mod M,,)

where ¢ is in A4,(H), and so (ba)? belongs to M,. That is H/M, has exponent p. Clearly
N{M,:1+heH}=1. '

42-2
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5.2, Torsion-free subvarieties of Wo A
Following L. G. Kovacs & M. F. Newman we make the following definition.

DEFINITION. 4 bivariety is torsion-free if it us generated by bigroups G for all of which A,(G) is
torsion-free. (5.2.1)
One easily has then

THEOREM. A bivariety & is torsion-free if and only if A,(F) is torsion-free for every split-free bigroup
F of 4. (5.2.2)

In this section we begin a classification of all torsion-free subvarieties of Ao 9, a necessary step
in our attempt at a classification of all subvarieties; it will be continued in §5.3. The main
theorem is the following one.

THEOREM. The bivarieties €o A, Eo Ay, Ao W, N (CoW)A NN (s > 1,¢ > 2) are all torsion-
free, and every proper torsion-free subvariety of Wo U can be written as a finite join of these special ones.

(5.2.3)

Proof. 1t is obvious that o 9, Ao A, are torsion-free; and for A, (EoA)A Ao A (¢ > 2) note

that, if F = F (Ao 9A), then since
CoA(F) = F
(by Neumann (1964, lemma 8.1)),

Ay (Fep (No(€oU) A AoA)) = Ay (Fop (A A Ao A)),

which is torsion-free (5.1.7).

Let # be a proper torsion-free subvariety of %o A. It follows from (5.1.4) that & has a bilaw
[, 2, ..., z2] for some natural numbers s, ¢; in the case when % has a bilaw z§ choose s to be the
least such n. Write F, = F, ,(%#) (r > 1) and then

Hr =Co %Is(Fr)

is finitely generated, torsion-free and nilpotent. Let /7 be an infinite set of primes (say all chosen
greater than ¢) so that from (5.1.10) there exist normal sub-bigroups N, (p) of H,, for each p in 17,

such that
exp (H,/N,(p)) = p, N{N,(p): pell} = 1.

Moreover, if we choose N,(p) to be the smallest such sub-bigroup of H, then N,(p) is normal
in F,; and if [I' is an infinite subset of I7 then n {N,(p): peIl'} is still equal to 1. We have

svar F, = \/ {svar F,/N,(p): peIl}. (5.2.4)
We can now employ some results from the last chapter. For,
Co A, < svar F,/N,(p) < A, 0A,,, pell
and by (4.1.8) there exists to each divisor # of 5 a subvariety (r, p) of A, 0 A, such that
svar F,[N,(p) = V{Z(r,p) (EoAy) A Wo A: ¢s}. (5.2.5)
Now by (4.4.4) we can determine ;(r, p): for ¢ > 1,
Fi(r,p) €{€o €, A, 0E, A, 0AY ANt r. 0}
and F(r,p) €{C0 €, A,0E, Eo Ay, Ao Ay A Ny, by

where ¢ > d(t,r,p) > 1 and for t > 1, d(t,7,p) > 2. Since the number of choices of Z(r,p) is
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uniformly bounded for all p, there exists an infinite subset 71’ of II such that for all p in II' and
each ¢ dividing s, either

F(r,p) = €o€ or H(r,p) =UA,0E or Fi(r,p) = Co,

or %(%P) = %Ipo QI10/\ ‘/Vc‘l(r,t)
(where d(r,t) < ¢). Combining (5.2.4) and (5.2.5) and rearranging terms

svar F, = V{%(r,p) (Eo W )A Ao A:pell’, t|s}. (5.2.6)
Now

V{Z(r,p) (EoUy) A Ao A:pell’}

=Co, if H(r,p) = €oE,
=CoA if H(r,p) = Co,,
< o if F(r,p) =A,0€E
< N o(C0U) A AU I F4(r,p) = W0 Uyh N g5 (5.2.7)

and, since Ao W, A, »(€oU)A Ao A are torsion-free, we may employ exactly the same
technique to deduce that

oWy < V{(A,0E) (Eoy) AAoA: pell’y,
N, 9y (Eo W) A Ao A < V{(U,0 WyA g, ) (Eo W) A W0 Az pell’y, (5.2.8)
whence V{F(r,p) (EoW)A Ao AN: pell’} |
e{Co Ay, Ao Ay, Co A, A4 n(Eo Ay) A Ao A

Substituting in (5.2.6) we see that svar F, is a finite join of the kind asserted in the theorem; note
that the number of choices for constituents in this join is uniformly bounded for all . Hence, since

A =V{svarF,:r > 1},
we may express & as a finite join of elements from the set
{Go Ay, oA, Ao Ay, AZ(EoW)A oA t]s, 2 <d <<},

thus proving (5.2.3).

CoRrOLLARY. If II is an infinite set of primes then

Ao Ay = V{A, 0, : pell},
Ng(CGoU)A Ao A = V{(A,0A, A ANG) (EoA)A Ao A:pell}. (5.2.9)
Proof. This follows from (5.2.7) and (5.2.8).

5.3. Subvarieties of Ao A,, and A,,0 A

The main results in this section will be the following theorem and (5.3.8).

THEOREM. If n is a natural number and B is a subvariety of Ao N, then there exists a subset A of the
divisors of n, and a bivariety P of finite exponent such that

.@:V{Q{OQIM(?EA}V;@.

Moreover if A is chosen to be minimal then it is unique. (5.3.1)
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CoOROLLARY, If n is a natural number, then A(AoN,,) has minimum condition.
Proof. If n > 1, and %, is a proper subvariety of %o %, then by (5.3.1)
By=\NV{UoWs:0e4} v P,

andif #, > #, > ... > #; > ... is a descending chain we may assume that the unique subset of
the divisors of # described in (5.3.1) is the same for all 2. Hence, using the modular law in A (%0 %)

By =V {NoW,: eV (PAB,), (5.3.2)

and by (4.2.29) the chain A%, > PAH, > ... must break off. Therefore the chain
%y > #, > ... must break off also.
To prove (5.3.1) we need three lemmas and some results from chapter 4.

LeMMA. Let A be a finite set of natural numbers. Then B(A) =V {Wo Ws: 8e A} is finitely based.
(5.3.3)
Proof. With each subset I" of 4 associate its least common multiple /. and the biword

r = [ys, 21, 2, .., 2004],
where {0y, ..., 8,} = 4 —I'. We shall prove by induction on |4| that (4) has
S ={gr: ' < A}u {z}4}

as a basis modulo the bilaws of 2o .

For |4| = 1 the result is obvious. Suppose therefore that |4| > 1 and that the result is proved
for all proper subsets of 4. Let #°(4) be the sub-bivariety of Ao determined by S, and let
G in ¥°(4) be critical. If G is nilpotent it is a p-group and G has a bilaw zP, where p*|l,,
and since this implies that p*|é for some de4, GeUAoWy; < #(4). If G is not nilpotent write
I'={0ed:|K| |8} Then if I" + A it follows from the fact that K acts fixed-point-free on 4,(G),
that the biwords

—

lep q,(“’) [3/1,21“ 22 5 eees Zg ]’ Ec F9 {71’ [EXS 73} = F_‘:9

are all bilaws in G. Hence G belongs to ¥°(I") and so by induction, Ge Z(I") < #(A);
finally if I' = 4, then since exp 4,(F) = p# (where p is prime not dividing |K|) it follows that
P?|l,, as before that p#|6 for some 6 in 4, and therefore since |K]| |4, that exp A,(G)|é8. This
completes the proof.

The foregoing proof yields

Cororrary. If GeV{NoW,:8e A} is critical then G belongs to Ao W for some & in A.  (5.3.4)
LeMMA. The torsion-free subvarieties of Mo A, are finite joins of elements of the set
{€o Ay, Ao Wy : 8|n}. (5.3.5)
Proof. This follows at once from (5.2.3) since for ¢ > 2
N(Eo U )A NoA & Ao,

Proof of (5.3.1). Suppose, without loss of generality, that €o U, < # < Ao A, and that #
does not have finite exponent. Write F = F (%) and let T be the torsion subgroup of 4,(F).
Then svar F/T is torsion-free and therefore, by (5.3.5), for some 4

svar F/T = V{AoAs: e} v Eo ¥, (5.3.6)


http://rsta.royalsocietypublishing.org/

|
A X

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

METABELIAN GROUPS AND VARIETIES 343

which, with the use of (5.3.3), is easily checked to be finitely based. Hence 7 is the closure of
finitely many elements and therefore has finite exponent, m say. Finally note that

A(Fym0 T =1
and therefore
A =svarF|TvZ, (5.8.7)

where #'( < U,,0A,,) has finite exponent. Put # = 2’v €o ¥, and combine (5.3.5) and (5.3.7)
and we have finished except for the uniqueness of a minimal 4. :
Suppose 4 is not empty, that d;, d,€4, 8|8, implies §; = &, and that

Ao U, < V{AoWAy:dedlv 2,

where Z has finite exponent, N say. Let ¢ be a commutator bilaw of V{2 0 %, : § € 4} so that ¢V is
a bilaw of the join and therefore of %o ,. Since Ao A, is torsion-free, ¢ is a bilaw of Ao Y,

Hence
9[0 %g < V{%[O Q[a:l?eA}

(if 2} is a bilaw of V/ {2 o A, : € A} consider ¢ = [y, 2i]). Now if G in Ao A, is non-nilpotent and
critical with |K| = { then, by (5.3.4), G belongs to %o, for some 8e 4. This shows that £|8
and therefore that o A, < Ao A,. Thus if

V{UAoWs:0ed}v P = V{AoW,:yel}v

where &, 2’ have finite exponent, then if § € 4 there éxists v €I such that 8|y, and there exists
0’ €4 such that y|é’, whence 6|¢” and so § = 8’ = y; thatis 4 < I'. Similarly, I" < 4 and we are
finished.

Finally, in this section, we shall prove

THEOREM. [f m is a natural number and % a subvariety of W,, 0 W then there exists a unique u|m, and
a bivariety P of finite exponent such that
B =W, 0UAV 2. (5.3.8)

CoroLLARY. A(A,,0N) has minimum condition.

Proof. The proof is similar to that of (5.3.2) and we omit it. (5.3.9)

Proof of (5.3.8). Let % be a proper subvariety of %,,0 9. Then according to (5.1.2) there exists
a smallest natural number u (m { «) such that for some r, s # hasabilaw [ y,,72§]* Then 9,0 A < Z;
for if not, (5.1.2) would lead to a law [y,,7'z{']* in B with ¢ < u. Now # has a bilaw [y, zi™]“

since, using (0.2.1), we have
m'

[43,2471* = T1 L3, 20140
=
r—1 "
= IT [4s, 1],
i=1
and for 1 < i < 7—1, m|(}"). Hence by (5.1.9)

WoUA <A < NyoAv Ao A,y
and modularity then gives

B =WoNV (B ANWNoUg,r).
Finally note that Z A %o Ag,r < Ay, 0 AA o Ag,r = A, 0 Ag,yr. This completes the proof.


http://rsta.royalsocietypublishing.org/

\

A

/&

Ly 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y & |
AL A

y A
/A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

344 - R. A. BRYCE

5.4. Minimum condition for A (o A)
Let F = F, (Ao A) be freely generated by {yy, ¥y, ...} U {2y, 2, ...} and let
Vie,s) = N (CoUy) (F) (¢, s = 1).
Then we have the following rather technical lemma.

LemMA. Let a; in V(c—1,5) N F y(AoA) (0 <7 < ¢) be such that, if oy: F->F
ke{l,...,c} by

YOy =Ys Z10 = Z1Zp0py Z;04 =25 JF 1, t,5€lf,
then, for all b, ...,b;€ Ay(F)® and ke{l, ..., ¢},
[ai, bl) ooy b,,/] a’/{: - [ai, blak’ ooy bzak] l’IlOd V(C+ ].,S).

Then there exists a natural number Ny, depending on c, s only, such that for i€{0, ...,c}

(4
[t 23, oo e r et 11 [l Vit 1,0).

is defined for

(5.4.1)

Proof. Let de{0, ..., ¢} and make the following definitions: for j&€{0, ..., d} write ;(0) = a; and

forie{l,...,d} write
a—it+1
oi) =" T1 fali=1), (=) 50, je(0,.nd=ik
=1
and for ¢€{0, ...,d},

¢:(d) = H [4;(2),J7]-

It is easy to verify that a;(¢) € V(¢ —j,5) N F(ss,,.9(A 0 A) and that, for arbitrary b,, ...,

[aj( ) 15 seey b]] O‘k = [a](l), blak) ooy b]ak'] mOd V(C+ ].,S)
forke{i+1,...,d}.
We prove that ford > 1 and i€{0,...,d -1}

gi1(d) € (clg;(d)) V(e +1,5).

a—i
For, gi(d) apyq = HO [a;(i), )28 205 441]
j=
a-i j
=TT 11 [ay(6), k2 () 21l mod Vic+ 1,9),
7=0 k=
a—i j-1
whence II ]]‘[ [a;(2), k25, (J—k) 25y 1] B € (clgy(d)) V(e +1,5).
i=1k=0

Collecting terms on the left of this expression we find

d"ﬁl[l ili[il[aj( ), (J—k) 2 ia]® kzl] (clgi(d)) V(c+1L,5),

k=0

or, in other words,
a—i-1

gi(d) = i la,(i+ 1), kzi] € (clg;(d)) V(e +1,5).
Now  guld) = ay(d)
= [a,(d—1),24]" = = [a;(d —1), 2 a-i415 oes Zora)

= [ad(O)) Zv+19 [RR3] v»}—d]d‘ = [ada v1y ooy Z v—I—d]de' mod V((,‘-l- 193)
and so we have

[@g Zo415 -5 Z§+d]dlsd€ (clgo(d)) V(e +1,5).

b;in A,(F)s,

(5.4.2)
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Now for de{l, ...,c} define
Ny = 1.(j15").

i=
Then we shall prove by (downward) induction on d, that
(22, 20415 --» Zra)l Vi€ (clgo(c)) V(e + 1,5); (5.4.3)

when d = ¢ we have proved this in (5.4.2), and ifford < j < ¢

hash 4 [ajs 20115 -5 20451 Vi € (elgo () V(e +1,5)
as been proved, then

go(d)¥a = go(¢) mod V(¢ +1,5)
and from (5.4.2), raising each side to the power Ng,,, we have
[aa, Z3 115 -5 Z51a]VeE (clgy(d)Na+) V(e 4 1,5)
< (clgo(e)) V(e +1,s).

Finally, noting that N; divides &, for all d, we see that (5.4.3) is what we set out to prove.

Lemma. If U < A,(F) carries a fully invariant sub-bigroup of F, and

Vie+1,5) < U< V(,s)
then there exists U* fully invariant in F, and a natural number N depending only on c, s such that
V(l,s) < U*,

and [U*,c4,(F)sIV¥ < U < [U*, c4y(F)®]. (5.4.4)

Proof. Our proof will be by induction on ¢; for ¢ = 0 U* = U, N = 1 will do, so suppose that

¢ > 1 and that for d€{0, ..., ¢ — 1} the result has been proved. Let ¢ be an element of U, so that
(modulo V(¢+1,5)) g can be written as a product of powers of commutators of the type
(Y3 282, ..o 21, Z3s e 23]
where s does not divide f,,...,f,. By renaming variables if necessary and collecting terms
according to the number of repetititions of 2§, say, we may suppose {Jy, ...,Jo} < {1, ..., ¢} and
write ¢
q= jl:__.[o[aj(q,i),jz‘g] (5'4'5)

(filling up with dummy a;(g,?)’s if necessary). Now a(q,1), ..., a,(¢,%) satisfy the hypotheses of
lemma 5.4.1 and so in particular

cl{la;(9, 1),jAx(F)1M: 0 <j < ¢}
< (cg) V(e+1,s) < clf[a;(g,1),jA3(F)¥]:0 <j < e} V(e +1,s). (5.4.6)
Define a;(q,1) = a;(q,1), je{0,...,¢}
and for k€{2,...,c}, (g, k) = a;(ayg(q,k—1),k), je{0,...,c}
Apply (5.4.1) to each (g, k) in turn as (5.4.6) was applied to ¢ and deduce
clf[et; (g, k), jAx(F)1¥:1 < j < 6, 0 <k < &}
< (clg) V(e+1,5)
< clffoe;(q, k),jAx(F)$]:1 <5 <6, 0 <k <c}V(e+1,s5). (5.4.7)
Notice that «,(g,¢) = 1. Since (g, k) € V(c —j,s) for all je{1, ..., ¢}, if we write
U; = cl{o;(q,k) :qe U, 0 <k <} V(e—j+1,9)

43 Vol, 266, A.
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we may apply the inductive hypothesis to deduce the existence of U containing ¥ (1,s) and an
integer n; depending only on ¢, s, j such that

[UF, (¢—j) 42(F)°]" < Us < [UF, (e =) 43(F)°] je{l,....c}. (5.4.8)
Hence if N = Ninyn,...n, and U* = II{U¥ : 1 < j < ¢} then
V(1,s) < U*

and, from (5.4.7) and (5.4.8),
[U%, cAy(F)1Y < U < [U*, cAy(F)’]
as required. Note that N depends on ¢, s alone.
CoroLLARY. If V(c+1,s5) < U < U < V{(c,s) then
U* < (UN* (5.4.9)
Progf. For, by definition, U; < U} for je{l,...,¢} and hence, by induction, U} < (Uj)*
whence U* < (UY)*.
TurEOREM, A(No W) has minimum condition. (5.4.10)
Proof. According to (5.1.4) and (5.1.8) a proper subvariety of 20 is contained in some
(N (EoU)A Ao A)v Ao A, so that, in order to prove minimum condition for A(AoA), it
suffices to consider the lattice of subvarieties of ¥7(c,s) = A, (€o U)A Ao A for all ¢, seIt, by
virtue of (5.3.9) and (2.1.3). Moreover, by (2.1.4), we need consider descending chains between
¥ (d,s) and ¥'(d—1,s) only, for de{2,...,c}. (The case
A(AN(CoU)A Ao A) = A(Ao A, v Eo A)
is covered by (5.3.2) and (2.1.3).)
Suppose accordingly that
V(dy$)>U 2 U2 ... 2U > ... 2V (d-1,5) (5.4.11)

is a descending chain. Since by (5.2.3) the torsion-free bivarieties between ¥ (d—1,s) and
" (d, s) have descending chain condition we may assume that the largest torsion-free subvariety
contained in each %, is the same; call it J. If F = F, (Ao NA) then the torsion subgroup T,/ U,
of 4,(F|U,)is 7 (F|U,). We show that T,/ U, has finite exponent. For, there exists an ascending
chain n |ny| ... |n;] ... in the division ordering of I+ such that, if

W)Uy = {xeT\|U, : 57 = 1}, iel*,
Then 7,/U, = U {W,/U, :i€I*}, and each W, is fully invariant in F. By (5.4.4) there exists an

ascending chain
V(Ls) S WF<...< WF< ..., (5.4.12)

and a natural number N depending on d, s alone such that
(W, dAy(F)*1Y < W, < [W, ddy(F)*].

By (5.3.2) and (2.1.3) the chain (5.4.12) breaks off; hence there exists a natural number m with
Wiy = Wi (i > m). Hence ¢ > m implies

Wiv < [W;nk> dAZ(F)s]N < Wm)
whence (W;/Uy)N < W,,/Uy; and therefore, if x;, € W;/U, has order n; exactly, x¥™» = 1 and so
ng| Nn,,, i3> m.

This proves that the exponent, ¢ say, of 7;/U,; divides Nn,,.
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We have then that
A,(FIU)n T|U, = 1,
so that F/Uj is a subdirect product of F/T, and F/A4;(F)¢; or
Uy =T VU, NV

where & has finite exponent, by (5.3.8). Consideration of non-nilpotent critical bigroups and
the fact that A,0A < ¥°(d,s), gives thatu = 1. By modularity we have that %; = 7 v (%; N P)
(e I*) and (4.2.29) finishes the proof that the chain (5.4.11) breaks off.

5.5. Subvarieties of Wo A of infinite exponent
In this final section of this chapter we bring together the threads of the other sections. Most of
these have in part involved the proving of special cases of (5.5.1) below, necessary to prove
minimum condition on A(2o A), a fact which we need to prove (5.5.1) in general. Theorems
5.5.1 and 5.3.1 complement one another and should be read in conjunction.
THEOREM. Let B be a proper subvariety of Wo A containing €oN. Then there exists a torsion-free
subvariety I of B and a unique natural number u such that

B=F VU UAVP,

where P has finite exponent. If B £ W, 0 v Wo N, for any m, n then T is unique; otherwise 7 v Eo A
is unique. (5.5.1)

CoroLLARY. The proper join-irreducible torsion-free subvarieties of o N are precisely
CoN, CoWys, Ao, A (CoU)AAA (> 0,pprime,c > 2,5 > 1).

Moreover, every torsion-free subvariety 7 of Wo A can be written uniquely as a finite irredundant join of

Join-irreducible torsion-free subvarieties and this is the only way that 7 can be expressed as a finite irredundant

Join of join-irreducibles. (5.5.2)
The bivariety & in (5.5.1) is in general not unique. Indeed

ExampLE. The bivarieties P in the statements of (5.5.1), (5.3.1), (5.3.8) and the bivariety A" in the

statement of (4.2.30) are in general not unique, even when minimally chosen. , (5.5.3)
It can be seen from the lattice A4(, 0, A A3) drawn in § 4.4 that ‘
(QIZO QI4 A '/V:;) \% (9[40 214 A JVé) = (9[20 214 A e/V:;) \% (%40%{2 A e/V;;), (5.5.4)

and that, moreover, A0 A, A A, and A, 0 A, A A3 are minimal with respect to preserving this
join. Joining each side of (5.5.4) with 9,09 disposes of (5.5.1), (5.3.8), and with U,0 A, of
(4.2.30). Joining Ao A, to each side of

(g0 Uy A M) V (Ugo Uy A NG) = (Ug0 U A AN3) v (A0 Ag A A)

disposes of (5.3.1).
Proof of (5.5.1). Let T be the torsion subgroup of 4 = A4,(F, (#)). Now using (5.4.10) it
follows as in (5.3.7) that 7 has finite exponent, and that

B=IVU

where 7 is torsion-free and % is a subvariety of %,,0 % say. Theorem 5.3.8 completes the proof
of existence.
43-2
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Let # have a bilaw [y, 7zi]t (by virtue of (5.1.2)) where ¢ is chosen minimally. Now [ y,, 7z{]?
is a bilaw in 2,0 A and so « divides ¢. Also, for some suitably large natural number n, 4 has a
bilaw [y;,72§"]* and the minimality of ¢ ensures that ¢ <z whence u = ¢, thus proving the
uniqueness of «.

Next suppose that # has a decomposition

B=TT vUoUVF.

If ¢ in 4,(Q,) is a bilaw in 7, then ¢~ is a bilaw in & for suitably chosen x, and hence ¢ is a
bilaw in 7. Now if & is not a subvariety of 9,0 % v o A, for any m, n then neither J nor I’
has a bilaw z; (v > 1) and therefore we have shown 7~ > J';similarly, 7 < 4 'sothatg = 7.
In any case neither 7 v oA nor J'v Eo A has a bilaw 2} (v > 1), and both are torsion-free,
so the proof just given shows that 7v EoUA =.7"'v o .

LemMA. Suppose that T, ..., T, are torsion-free and chosen from the list in (5.5.2), such that
Ty < V{TZ;:1 i< AL

Then for somei > 1,7, < I, (5.5.5)
The proof of (5.5.5) uses familiar arguments with critical bigroups and it is omitted.

Lemma. If T = V{%;:1 < i < p} is torsion-free and T is the largest torsion-free subvariety of %,

then
T =V{T;:1<i<pu. (5.5.6)

Again the proof is routine and it is omitted.

Proof of (5.5.2). From (5.2.3) we see that the bivarieties displayed are the only candidates for
join-irreducibility: and (5.5.5), (5.5.6) show that they are indeed join-irreducible. Moreover,
if we write an arbitrary proper torsion-free subvariety of 2o as an irredundant join of join-
irreducibles (as (5.4.10) ensures we can) then (5.5.5) and (5.5.6) ensure the uniqueness we want.

Finally, bringing together the results of this section and (4.2.33), we have

TueoreM, The non-nilpotent join-irreducible subvarieties of o A are:
(a) Infinite exponent:
oA, A (CoUN)AAA (s=1,¢>2); W0 (pprime, x> 0);
and (b) Finite exponent:
(i) L(CoA,) ANoN, p prime, L join-irreducible of p-power exponent, P + €o €;
(i) % (GoA,) A Wo A, U join-irreducible of p-power exponent (p prime), Up + Co €, p1t,t > 1.
(5.5.7).
Proof. 1t only needs verifying that 90, 0 2 is join-irreducible and this follows easily from (5.3.8).
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CHAPTER 6. APPLICATIONS TO VARIETIES OF METABELIAN GROUPS
In § 6.1 we give a reduction, to the case of prime-power exponent, of the problem of deter-
mining all join-irreducibles in A(AA). Section 6.2 contains results relating to distributivity in
A(AA). Section 6.3 contains classification results similar to (4.1.8) for the case m nearly prime
to n, and for arbitrary m, n provided that the class of p-groups in the varieties concerned is suitably
restricted. ‘

6.1. Join-irreducibles in A(UAA)

As promised earlier we include statements of two results of Kovacs & Newman. In appendix I
the proofs of these are sketched. A torsion-free variety of groups is one generated by torsion-free
groups.

TueoreM (L. G. Kovacs & M. F.Newman). Let B be a proper subvariety of UN. Then there exists

a unique torsion-free variety T and a unique natural number u such that

L =TvAAVE,
where B has finite exponent. (6.1.1)

Tueorem (L.G.Kovacs & M.F.Newman). The varieties of groups N, A, A AW (¢, s > 1) are
torsion-free and join-irreducible. Every torsion-free subvariety of AU can be uniquely expressed as an
irredundant join of these torsion-free join-irreducibles. (6.1.2)

CoroLLARY. The join-irreducibles in A(AW) which do not have finite exponent come from the list
RN A NAAA,  WpaA, pprime, o >0, ¢5>= 1 (6.1.3)
It is here that chapter 4 becomes relevant, enabling a further reduction to be made. First we

note some preliminaries, beginning with a converse to (3.3.4).

THEOREM. Let G be a non-nilpotent metabelian critical group. There is a complement B for G’ in G, and
(G, G', B) is a critical bigroup. Moreover, all such bigroups carried by G are isomorphic. (6.1.4)
Proof. Since G is not nilpotent there is a natural number « such that

1% G(u)= G(u-l—l): veee

Now Gy, is abelian and, by Schenkman (1955), is complemented in G, all such complements
being conjugate. The same proof as that of (3.2.1) can now be used together with (3.1.2); the
conjugacy of complements ensures that different (G, G’, B) are isomorphic.

LemMma. If g is a biword, then there exist words wy, ..., wy such that q is a bilaw in the non-nilpotent
eritical bigroup G of Wo A if and only if wy, ..., wy are laws in (the group) G. Conversely, if w is a word,
then there exists a biword q" such that w is a law in the carrier of the bigroup H if and only if ¢’ is a bilaw
in H. (6.1.5)

Progf. We may assume the biword ¢ written, modulo the bilaws of €0 9, in one of the forms

t
. Xl ous
yic; Zf, H [yb Z/}“, LR Zr"]o%
=1
by (2.2.3). The words
t
Az A :
[xls xz]a, [xl’ X5 xg]> ']]1 [xls Xa5 x3“, LR xr-li—TZ “25
=

respectively then do what we want. For the converse, ¢’ = w(y, 2, ..., ¥,2,) will serve.
43-3
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Let 4, be the set of all subvarieties of A which are generated by non-nilpotent critical groups,
and consider /A, as a lattice under the inherited inclusion order. Similarly, define A, to be the
set of sub-bivarieties of o A which are generated by non-nilpotent critical bigroups. By virtue
of (3.3.4) and (6.1.4) there is a one-to-one correspondence between (isomorphism classes of)
non-nilpotent critical groups in A and (isomorphism classes of ) non-nilpotent critical bigroups

in Yo A. Using (6.1.5) we see that this one-to-one correspondence induces a lattice isomorphism
0: Ay— Ay defined by:

(var {G; : G; non-nilpotent, critical, tel}) 0 = svar{G,:iel}. (6.1.6)

LemmA, Suppose that {G; : i €1} is a set of metabelian critical groups of bounded exponent which is critical-

Sactor closed, and that G in var{G; i€} is critical. Then there exists a finite subset I' of I such that for
vin I’y |oGy| = |oG|, |Ky| = |K| and

Gevar{G;:iel'}. (6.1.7)

Proof. Use a result of Kovadcs & Newman (1966, 1.12) and one of Higman (1959, lemma 4.2).

THEOREM, Let B be a metabelian variety of finite exponent. Then if B does not have a prime-power
exponent it is join-irreducible if and only if

B = (L(GoA)AAoA) 7,

where & is join-irreducible of p-power exponent with €o € + L, and where t > 1 and p does not divide t.
(6.1.8)

Proof. If B is join-irreducible then it must be generated by its non-nilpotent critical groups.
Hence 86 is join-irreducible in Ag and therefore, by virtue of (4.1.9), join-irreducible in A (2 o %).
From (4.1.16)

BO = F(EoWU)A Ao N,

where & and ¢ have the properties asserted. Now since 8B is in 4,, 8 is a subvariety of 86r; and
by (1.7.2), (80) 7 < (Bo) 7 < B whence B = Bor.

Conversely, one verifies easily that for & in Ay, # = %70, so that if & is join-irreducible and
of finite exponent, #1 = #6-1is join-irreducible in 4, and therefore, by (6.1.7), in A(AA) also.

Thus the classification of non-nilpotent join-irreducibles in A(AA) is reduced to the case of
prime-power exponent. Brooks (1968) has dealt with A (%, ,.) obtaining a result similar to
(4.2.30), and is working on the general case.

6.2. Distributivity in AU, A,,)
The results (4.1.11) and (4.1.13) have their analogues here: we adapt the notation in (4.1.7)
in the obvious way.

THEOREM. For each prime p dividing m, the mapping v,: A(B)—A(B,,) defined by
Wy, =WAL,, W<B=UA,Y,

is a lattice homomorphism. The v, provide a subdirect decomposition of A(B). (6.2.1)
Proof. Use (6.1.7).

THEOREM. Let A, be the set of positive divisors of n,,, ordered by division. Then if |A,)| = s, A(B,) is
a sub-direct product of A, A(W,,) and s, — 1 copies of D(U,,). (6.2.2)
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Proof. Write, for 8 < 9B,
%gp() = % A QI’ILP’ %gpl = % A up,
WE,, = var {Ge W : G critical, non-nilpotent},
and define £,; = £,0A,,; for t|n, (where A, is defined in (4.1.12)). It follows from (6.1.7) that
&ps Ept are lattice homomorphisms for te{0} U 4,.. Moreover, for ® < B
% = %gpo V %gp]_ V %gp,

and therefore, using (4.1.8), B is determined uniquely by the set {8¢,,:¢€{0}u 4,}. This
completes the proof.

CoRrOLLARY. If W < W, N, then A(X) is distributive if and only if for each prime p dividing m and
each t dwiding n,,, A() v, &, is distributive. (6.2.3)

COROLLARY. If m is nearly prime to n, then A(N,, N,,) is distributive. (6.2.4)

Proof. We need (6.2.3), (4.3.13) and (4.1.6) and Newman & Kovac’s (1970) result that
A(U,0 A,) is distributive (see appendix II).

yl

CoOROLLARY. Let By be a variety of metabelian groups of bounded exponent in which p-groups have class
at most p. Then A(XB) is distributive. On the other hand, if X is the subvariety of e ey (P4 N, N % 1)
which consists of groups whose Sylow p-subgroups have class at most p + 1, then A(X) is not distributive.
(6.2.5)
Proof. Use (6.2.3), (4.4.4), (4.1.6) and (4.4.8) to reduce to the question of showing that
p-power exponent subvarieties of class p form a distributive lattice. For class p — 1 this follows
from Weichsel (1967) or Brisley (1967); and for class p from Warren Brisley’s unpublished
description of A(AA A B« A A},) (see appendix II).

6.3. Classification results

Ideally one would like to have, for varieties of metabelian groups of finite exponent, a result
similar to (4.1.8), classifying subvarieties of 9, 2, in terms of those of prime-power exponent.
Regrettably (4.1.8) does not generalize as one would hope. However we can give rather elaborate
conditions under which (4.1.8) does have an analogue: two classification results follow as
corollaries. The notation of (4.1.7) and §§ 1.7 and 6.2 is used.

Let %A, < W < A, A, and define

W= v { W, Wy A Wpatw.dd Wy, 2 plm, tmy}, (6.3.1)
where for each p|m:
%p]_ = %Vp,
Wy = Wy, Epe 7, 1 % tny,
peVm,

%29 = maxexp{G': Ge W critical, exp oG = p, |K| = ).
Notice that ¥ < W', and for p|m:
(i) Wy < Uy andfort> 1, W,,0eD(%,),
(ii) ¢|u|n, implies W,,, < W, a(p,u) < a(p,t). (6.3.2)
(iii) p*®-H < min (p*2: Y, exp W,¢).

THEOREM. If U, < W < A,y Ay, then W = W' if and only if for plm and 1 + t|n,,, Wy, £, is open.
(6.3.3)
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Proof. It is clear that ¥, W' have the same nilpotent critical groups. Suppose for some p and
some t(# 1) W, is non-trivial, and let P in W,, o be a critical bigroup. By (3.4.7) there exists
critical G with F* =~ P and |K| = ¢t. Now 8 = " if and only if forall such choices of p and P,
G belongs to W; that is if and only if Gevar{G;:i€l, G, critical,exp ¢G; = p, |K;| = ¢, G;€ W}
(by (6.1.7)), which is true if and only if G esvar{G;:iel} (by(6.1.4), (6.1.5)), or F* e Bv, & ;.
Hence 8 = W' if and only if for all such choices of P in ®,,o, P belongs to Wv,, £,;; in other
words, if and only if v, §,; are all open.

FiGURE 2
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CoroLLARY. (BN = W', (6.3.4)
The decomposition (6.3.1) for " is essentially unique, as the following theorem shows.

THEOREM. If W, (p|m,t|n,) are subvarieties of W, W, satisfying (6.3.1) and (6.3.2) and o’ (p, 1)
are natural numbers satisfying (6.3.1) and (6.3.2) then for t > 1 and p|m,

W0 = Wy0(= W, &,;) and o' (p,t) = a(p,t). ' (6.3.5)

Proof. The first assertion follows in the usual way from (3.4.7) and (6.1.7). The equality of
a(p,t), &’'(p,t) follows because there exist in W' the critical 4-groups of Cossey (1966, theorem
4.2.2) with derived group exponents p*r: 8, p2.9 and derived factor groups of order t.

It remains to reduce the hypotheses of (6.3.3) so as to get some positive results of existence and
uniqueness for certain metabelian varieties along the lines of (4.1.8). The two theorems following
achieve this; their proofs follow from (4.3.11) and (4.4.4) respectively. (The unpublished work
of Kovacs & Newman and of Brisley (see appendix II), together with (4.3.11) and (4.4.4) then
provides a complete classification in these cases).

THEOREM. If m is nearly prime to n then v, &, is open for each I < Uy Wy plm, 1 * t|n,.  (6.3.6)

THEOREM. If X is a variety of metabelian groups of bounded exponent e in which p-groups have class at
most p, then v, £, is open for each [ < X, ple, 1 * tle,,. (6.3.7)

By way of illustration, the lattice A (%, ) is drawn, using the Kovacs & Newman description
of A(A,As,).T Notice that even in this simplest case the 2, need not be unique (cf. example
1.7.11); both the varieties My, ; A AW and &, give rise to the same non-nilpotent critical groups;
alternatively

(Ropa AU o = G, 0.

Finally, we give an example of a sub-bivariety of %,0 2, which is not open, thereby showing

that < W' can happen.

ExampirE. Consider the bigroups F,, F,, F; carried by the groups
Cowr (Cyx ),  Cywr (Cyx Cy x Cy)[(Cywr (Cy x Cy x ) ),
Cowr (Cy x Cy) [(Cywr (Cy x Cy)) o)
respectively. It is tedious though not difficult to verify that F,, F,, F; generate the same variety

of groups (indeed the carrier of any bigroup in 2,0 A, which does not satisfy [y, 3z, z,], and
has class 5, generates 2, Ay A N;). However F, has the bilaws

(415 221, 225, [ 15 221, 20, 23] [ Y1, 205 225, 23] [ Y1, 245 20, 225],
F, has the first, but not the second, and Fj has neither.
In fact if G'is the critical group with F* ~ F, and |K| = 3, say, while 8, = var F; = var %;(G),
B, = var Ay Ay (G) and By = var A, A, W,(G) then it is clear from the above example that var G
is at best second maximal in

By Ay A By g A By Ay

Much of the work presented here is contained in Bryce (1967), and was done while I held a
Commonwealth Postgraduate Award which was supplemented by the Australian National
University. My supervisor was Dr L. G. Kovacs to whom my grateful thanks are due, both for
his supervision and, more recently, for the ready access he has allowed me to unpublished work
of his own.

1 See appendix II. The variety S, here is just Ry..
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AprpENDIX I. PrROOFs oF (6.1.1) AND (6.1.2)

In a forthcoming paper (‘Varieties of metabelian groups’, submitted to the Bulletin of the
Australian Mathematical Society) Kovacs & Newman announce the results (6.1.1) and (6.1.2).
Since my chapter 5 relied so heavily on their methods, they have kindly allowed me to publish
complete proofs here. The sketch to follow, together with their announcement, provides a proof
of (6.1.1) and (6.1.2).

(a) (cf. (5.1.1)). If m, ¢ are coprime, C,, wrC; generate U, ;. C,, wrC, generates U, A.
(P.J. Cossey (1966) and Hanna Neumann (1967, 17.6 and 22.44).)

(6) (cf. (5.1.2), similar proof). If 9, A < U < AA, U has a law [x,y,72°]%, m 1 ¢.

(¢) (cf. (5.1.4), similar proof). If I < AW, U has a law [x,y,2,..., z]"

(d) (cf. Higman (1955). If H is a finitely generated, torsion-free, nilpotent group and /7 an
infinite set of primes then H is residually of prime (e II) exponent.

(¢) For mynelr, A, AAAN,, = A, A, v A.

Proof. Let F = F,(,, A AAA,). Now U, (F)/F' is free abelian; hence, since A, (F) is abelian,
F'is complemented in A, (F). Therefore A, A, (F)n F' = A, (F’) = 1, whence the result.

(f) (cf. (5.3.8)). If 1 < A, A then there exists a unique u|m such that 10 = A, A v B where
‘B has finite exponent.

Proof. As in proof of (5.3.8) there exists u|m and N eIt such that %, % < U, and [x,yV]*is a
law in W. From (¢) if F = F, (%, A), {[x,yV]} (F) > N, Un(F) n F’ so that

{{% ™" (F) > Wy (W A (F) 0 F7) = Wy Ay (F) 0 AL (F)

since A, Av(F)nF’ is complemented in F’ (by M.S.Brooks (1968, 1.2.2)). Therefore
A, A< U <A, AV A, Ay and modularity gives the result.

Proof of (6.1.2). Similar to that of (5.2.3): use (¢) in place of (5.1.4), (d) in place of (5.1.10),
(6.3.3) and (6.3.6) in place of (4.1.8). The torsion-freeness of N, A, A A2 is proved in Kovacs &
Newman’s announcement.

Proof of (6.1.1). Similar to that of (5.5.1), appealing to Cohen (1967) instead of to (5.4.10),
and to (f) instead of to (5.3.8).
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AprENDIX II

For convenience we quote here two unpublished theorems which have been referred to
several times in the text.

(a) TreorEM (Kovacs & Newman; cf. (4.3.11)). The lattice A(W,a W,) is distributive. Every
subvariety W of Wy,a N, can be written

W= Apa WyAByr AN{Ups R, 0 < f <13

Jor some T€{0,...,a—1} and vy from the set {1,2,...,p—1,p*,p, ..., Ap— 1, Ap*, Ap, ..., w}. There
is a condition that may be imposed on the v 5, similar to (4.3.11) (ii), but much more complicated, which makes
them unique. The variety R, ,» is defined by the law TTiPa[%;y X1, vvy Xy g, g1y - e vy Kap)e

() TuHEOREM (Warren Brisley; cf. (4.4.4)). Each verbal subgroup V of the free group F of rank oo in
the variety A A B o AN, can be written uniquely as

_ %1 p% Dy 1D,
V= Fhy Floy ... Fip FGE,

where a0 > 0y > oo > 0,0 =0, 00, —0, 00 < 1, o0 < a—1; and where F, is defined by the word

H%‘]=2[‘xia X1s Koy eees Xi15Xip1s 000 xp]'
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